Glypican-1 in human glioblastoma: implications in tumorigenesis and chemotherapy.

Oncotarget

Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, SP, Brazil.

Published: March 2020

AI Article Synopsis

  • Glioblastoma is a common and aggressive brain tumor with a short average survival of 24 months, and glypican-1 has been found to be overexpressed in these tumors, negatively affecting patient survival.
  • Research using U-251 MG cell lines showed that reducing glypican-1 levels leads to decreased cell growth and migration, indicating its crucial role in glioblastoma's progression and behavior.
  • The findings suggest that targeting glypican-1 could enhance the effectiveness of treatments like temozolomide, marking it as a potential therapeutic target for improving outcomes in glioblastoma patients.

Article Abstract

Glioblastoma is one of the most common malignant brain tumors, with which patients have a mean survival of 24 months. Glypican-1 has been previously shown to be overexpressed in human glioblastoma and to be negatively correlated with patient's survival. This study aimed to investigate how glypican-1 influences the tumoral profile of human glioblastoma using cell line models. By downregulating the expression of glypican-1 in U-251 MG cells, we observed that the cellular growth and proliferation were highly reduced, in which cells were significantly shifted towards G0 as opposed to G1 phases. Cellular migration was severely affected, and glypican-1 majorly impacted the affinity towards laminin-binding of glioblastoma U-251 MG cells. This proteoglycan was highly prevalent in glioblastoma cells, being primarily localized in the cellular membrane and extracellular vesicles, occasionally with glypican-3. Glypican-1 could also be found in cell-cell junctions with syndecan-4 but was not identified in lipid rafts in this study. Glypican-1-silenced cells were much more susceptible to temozolomide than in U-251 MG itself. Therefore, we present evidence not only to support facts that glypican-1 is an elementary macromolecule in glioblastoma tumoral microenvironment but also to introduce this proteoglycan as a promising therapeutic target for this lethal tumor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7061737PMC
http://dx.doi.org/10.18632/oncotarget.27492DOI Listing

Publication Analysis

Top Keywords

human glioblastoma
12
u-251 cells
8
glypican-1
7
glioblastoma
7
cells
5
glypican-1 human
4
glioblastoma implications
4
implications tumorigenesis
4
tumorigenesis chemotherapy
4
chemotherapy glioblastoma
4

Similar Publications

Background: Glioblastoma is characterized by neovascularization and diffuse infiltration into the adjacent tissue. T2*-based dynamic susceptibility contrast (DSC) MR perfusion images provide useful measurements of the biomarkers associated with tumor perfusion. This study aimed to distinguish infiltrating tumors from vasogenic edema in glioblastomas using DSC-MR perfusion images.

View Article and Find Full Text PDF

ATRX mutation modifies the DNA damage response in glioblastoma multiforme tumor cells and enhances patient prognosis.

Medicine (Baltimore)

January 2025

Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.

The presence of specific genetic mutations in patients with glioblastoma multiforme (GBM) is associated with improved survival outcomes. Disruption of the DNA damage response (DDR) pathway in tumor cells enhances the effectiveness of radiotherapy drugs, while increased mutational burden following tumor cell damage also facilitates the efficacy of immunotherapy. The ATRX gene, located on chromosome X, plays a crucial role in DDR.

View Article and Find Full Text PDF

Objective: Gliomas are a general designation for neuroepithelial tumors derived from the glial cells of the central nervous system. According to the histopathological and immunohistochemical features, the World Health Organization classifies gliomas into four grades. Bevacizumab is a monoclonal antibody targeting vascular endothelial growth factor that has been approved for the treatment of glioblastoma multiforme (GBM) as a second-line therapy.

View Article and Find Full Text PDF

The overall goal of this work was to assess the ability of Natural Killer cells to kill cultures of patient-derived glioblastoma cells. Herein we report impressive levels of NK-92 mediated killing of various patient-derived glioblastoma cultures observed at ET (effector: target) ratios of 5:1 and 1:1. This enabled direct comparison of the degree of glioblastoma cell loss across a broader range of glioblastoma cultures.

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) is the most common primary brain tumor in adults and has a median survival of less than 15 months. Advancements in the field of epigenetics have expanded our understanding of cancer biology and helped explain the molecular heterogeneity of these tumors. B-cell-specific Moloney murine leukemia virus insertion site-1 (Bmi-1) is a member of the highly conserved polycomb group (PcG) protein family that acts as a transcriptional repressor of multiple genes, including those that determine cell proliferation and differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!