Copper-catalyzed enantioselective conjugate addition of organometallic reagents to challenging Michael acceptors.

Beilstein J Org Chem

Université de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.

Published: February 2020

The copper-catalyzed enantioselective conjugate addition (ECA) of organometallic nucleophiles to electron-deficient alkenes (Michael acceptors) represents an efficient and attractive methodology for providing a wide range of relevant chiral molecules. In order to increase the attractiveness of this useful catalytic transformation, some Michael acceptors bearing challenging electron-deficient functions (i.e., aldehydes, thioesters, acylimidazoles, -acyloxazolidinones, -acylpyrrolidinones, amides, -acylpyrroles) were recently investigated. Remarkably, only a few chiral copper-based catalytic systems have successfully achieved the conjugate addition of different organometallic reagents to these challenging Michael acceptors, with excellent regio- and enantioselectivity. Furthermore, thanks to their easy derivatization, the resulting chiral conjugated products could be converted into various natural products. The aim of this tutorial review is to summarize recent advances accomplished in this stimulating field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059538PMC
http://dx.doi.org/10.3762/bjoc.16.24DOI Listing

Publication Analysis

Top Keywords

michael acceptors
16
conjugate addition
12
copper-catalyzed enantioselective
8
enantioselective conjugate
8
addition organometallic
8
organometallic reagents
8
reagents challenging
8
challenging michael
8
michael
4
acceptors
4

Similar Publications

Data Checking of Asymmetric Catalysis Literature Using a Graph Neural Network Approach.

Molecules

January 2025

GSK Carbon Neutral Laboratories for Sustainable Chemistry, Jubilee Campus, University of Nottingham, Triumph Road, Nottingham NG7 2TU, UK.

The range of chemical databases available has dramatically increased in recent years, but the reliability and quality of their data are often negatively affected by human-error fidelity. The size of chemical databases can make manual data curation/checking of such sets time consuming; thus, automated tools to help this process are highly desirable. Herein, we propose the use of Graph Neural Networks (GNNs) to identifying potential stereochemical misassignments in the primary asymmetric catalysis literature.

View Article and Find Full Text PDF

Rational engineering of a recognition group to construct a two-photon reaction-based fluorescent probe for rapid and selective sensing of cysteine.

Analyst

January 2025

Anhui Provincial Key Laboratory of Biomedical Materials and Chemical Measurement, Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.

It is highly required to rationally design fluorescent probes a molecular engineering strategy with desired analytical performance for applications in sensing and imaging. Reaction-based fluorescent probes for highly selective sensing of cysteine (Cys) are mainly based on the participation of Cys in reactions such as, addition-cyclization with acrylates, cyclization with aldehydes, coordination displacement, Michael addition reactions, and cleavage reactions. Cys-triggered reactions with the O atoms of ether bonds has also been used to construct reaction-based fluorescent probes based on the substitution of the ether with the nucleophilic thiolate of Cys.

View Article and Find Full Text PDF

Methyleugenol (ME) has been classified as a "group 2B carcinogen" by IARC. Its positional isomer methylisoeugenol (MIE) has been considered to be of "generally recognized as safe'' status by FDA. ME was more cytotoxic than MIE in cultured mouse primary hepatocytes.

View Article and Find Full Text PDF

Preparation of ethynylsulfonamides and study of their reactivity with nucleophilic amino acids.

Org Biomol Chem

January 2025

Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-2-1 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.

The development of covalent drugs, particularly those utilizing Michael acceptors, has garnered significant attention in recent pharmaceutical research due to the ability of such molecules to irreversibly inhibit protein function. This study focusses on the synthesis and evaluation of ethynylsulfonamides, which are predicted to have superior covalent binding ability, metabolic stability, and water solubility compared to traditional amides. We developed a straightforward synthesis method for ethynylsulfonamides and comprehensively evaluated the covalent binding abilities of these compounds using NMR with various nucleophilic amino acids in different solvents.

View Article and Find Full Text PDF

Background: Sphingosine-1 phosphate (S1P) is a bioactive lipid molecule that modulates inflammation and hepatic lipid metabolism in MASLD, which affects 1 in 3 people and increases the risk of liver fibrosis and hepatic cancer. S1P can be generated by 2 isoforms of sphingosine kinase (SphK). SphK1 is well-studied in metabolic diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!