Enabling Spike-Based Backpropagation for Training Deep Neural Network Architectures.

Front Neurosci

Nanoelectronics Research Laboratory, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States.

Published: February 2020

Spiking Neural Networks (SNNs) have recently emerged as a prominent neural computing paradigm. However, the typical shallow SNN architectures have limited capacity for expressing complex representations while training deep SNNs using input spikes has not been successful so far. Diverse methods have been proposed to get around this issue such as converting off-the-shelf trained deep Artificial Neural Networks (ANNs) to SNNs. However, the ANN-SNN conversion scheme fails to capture the temporal dynamics of a spiking system. On the other hand, it is still a difficult problem to directly train deep SNNs using input spike events due to the discontinuous, non-differentiable nature of the spike generation function. To overcome this problem, we propose an approximate derivative method that accounts for the leaky behavior of LIF neurons. This method enables training deep convolutional SNNs directly (with input spike events) using spike-based backpropagation. Our experiments show the effectiveness of the proposed spike-based learning on deep networks (VGG and Residual architectures) by achieving the best classification accuracies in MNIST, SVHN, and CIFAR-10 datasets compared to other SNNs trained with a spike-based learning. Moreover, we analyze sparse event-based computations to demonstrate the efficacy of the proposed SNN training method for inference operation in the spiking domain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059737PMC
http://dx.doi.org/10.3389/fnins.2020.00119DOI Listing

Publication Analysis

Top Keywords

training deep
12
spike-based backpropagation
8
neural networks
8
deep snns
8
snns input
8
input spike
8
spike events
8
spike-based learning
8
deep
6
snns
6

Similar Publications

Effective BCDNet-based breast cancer classification model using hybrid deep learning with VGG16-based optimal feature extraction.

BMC Med Imaging

January 2025

Department of Information Technology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.

Problem: Breast cancer is a leading cause of death among women, and early detection is crucial for improving survival rates. The manual breast cancer diagnosis utilizes more time and is subjective. Also, the previous CAD models mostly depend on manmade visual details that are complex to generalize across ultrasound images utilizing distinct techniques.

View Article and Find Full Text PDF

Tabular data, spreadsheets organized in rows and columns, are ubiquitous across scientific fields, from biomedicine to particle physics to economics and climate science. The fundamental prediction task of filling in missing values of a label column based on the rest of the columns is essential for various applications as diverse as biomedical risk models, drug discovery and materials science. Although deep learning has revolutionized learning from raw data and led to numerous high-profile success stories, gradient-boosted decision trees have dominated tabular data for the past 20 years.

View Article and Find Full Text PDF

In recent years, the healthcare data system has expanded rapidly, allowing for the identification of important health trends and facilitating targeted preventative care. Heart disease remains a leading cause of death in developed countries, often leading to consequential outcomes such as dementia, which can be mitigated through early detection and treatment of cardiovascular issues. Continued research into preventing strokes and heart attacks is crucial.

View Article and Find Full Text PDF

Groundwater nitrate response to hydrogeological conditions and socioeconomic load in an agriculture dominated area.

Sci Rep

January 2025

School of Water and Environment, Chang'an University, No.126 Yanta Road, Xi'an, 710054, Shaanxi, China.

Nitrate pollution is widespread environmental concern in most shallow groundwater systems. This study conducts a comprehensive investigation of shallow groundwater, deep groundwater, and surface water in a region of the Chinese Loess Plateau. Nitrate pollution in this area is severe with more than half of the shallow groundwater samples exceeding the limit of nitrate for drinking water (50 mg/L).

View Article and Find Full Text PDF

Background: Chronic liver disease (CLD) is a substantial cause of morbidity and mortality worldwide. Liver stiffness, as measured by MR elastography (MRE), is well-accepted as a surrogate marker of liver fibrosis.

Purpose: To develop and validate deep learning (DL) models for predicting MRE-derived liver stiffness using routine clinical non-contrast abdominal T1-weighted (T1w) and T2-weighted (T2w) data from multiple institutions/system manufacturers in pediatric and adult patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!