Purpose: Periodontal ligament stem cells (PDLSCs) have considerable potential for use as a means of achieving periodontal regeneration due to their noteworthy proliferative properties and secretory functions. In particular, PDLSCs secrete vascular endothelial growth factor (VEGF) which enhances angiogenesis and osteogenesis. The resulting repair and development of blood vessels and hard tissues which would occur in the presence of these cells could be central to an effective periodontal regeneration procedure.The bacterial biofilm of tooth surface related to the periodontium might provide either an inhibition or a stimulus to different factors involved in a regenerative process. Cell culture experiments have been investigated by adding lipopolysaccharide (LPS) to the culture medium but the effect of various concentration of LPS in these circumstances has not been investigated. Therefore, this study aimed to investigate the effect of LPS concentrations on proliferation of PDLSCs and on their secretion of VEGF.

Materials And Methods: PDLSCs were treated with 0, 5, 10 and 20 µg/mL of LPS. At 48 and 96 h, total cell numbers of control and LPS treated PDLSCs were counted by haemocytometer under a microscope. The VEGF concentration in the conditioned media of the PDLSCs was measured by ELISA.

Results: Rate of cell proliferation of PDLSCs decreased significantly in all LPS treated groups at both 48 h and 96 h except for the group treated with 5 µg/mL of LPS at 48 h. At both 48 and 96 h, VEGF secretion from PDLSCs was reduced significantly at all three LPS concentrations. There was no statistically significant difference in cell proliferation and the amount of VEGF secretion of PDLSCs among the groups treated with different LPS concentrations. No statistically significant change was found in cell proliferation of LPS treated PDLSCs over time, whereas VEGF secretion of PDLSCs was found to have increased significantly with time despite the LPS treatment.

Conclusions: LPS reduced cell proliferation and VEGF secretion of PDLSCs, suggesting that periodontal pathogens might reduce the capability of PDLSCs in periodontal regeneration. Yet, LPS treated PDLSCs remained viable and VEGF secretion increased significantly over time. Further research is needed to study the potential use of PDLSCs in periodontal regeneration and the relationship of biofilm LPS accumulations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7063416PMC
http://dx.doi.org/10.1016/j.sdentj.2019.08.001DOI Listing

Publication Analysis

Top Keywords

cell proliferation
20
vegf secretion
20
periodontal regeneration
16
lps treated
16
secretion pdlscs
16
pdlscs
15
lps
14
lps concentrations
12
treated pdlscs
12
vascular endothelial
8

Similar Publications

Purpose: Breast cancer ranks as the most prevalent cancer in women, characterized by heightened fatty acid synthesis and glycolytic activity. Fatty acid synthase (FASN) is prominently expressed in breast cancer cells, regulating fatty acid synthesis, thereby enhancing tumor growth and migration, and leading to radioresistance. This study aims to investigate how FASN inhibition affects cell proliferation, migration, and radioresistance in breast cancer, as well as the mechanisms involved.

View Article and Find Full Text PDF

Neuronal TRPV1-CGRP axis regulates peripheral nerve regeneration through ERK/HIF-1 signaling pathway.

J Neurochem

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Severe trauma frequently leads to nerve damage. Peripheral nerves possess a degree of regenerative ability, and actively promoting their recovery can help restore the sensory and functional capacities of tissues. The neuropeptide calcitonin gene-related peptide (CGRP) is believed to regulate the repair of injured peripheral nerves, with neuronal transient receptor potential vanilloid type 1 (TRPV1) potentially serving as a crucial upstream factor.

View Article and Find Full Text PDF

Discovery of Novel Small-Molecule Inhibitors Disrupting the MTDH-SND1 Protein-Protein Interaction.

J Med Chem

January 2025

State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.

MTDH-SND1 protein-protein interaction (PPI) plays an important role in the initiation and development of tumors, and it is a target for the treatment of breast cancer. In this study, we identified and synthesized a series of novel small-molecule inhibitors of MTDH-SND1 PPI. The representative compound showed potent activity against MTDH-SND1 PPI with an IC of 487 ± 99 nM and tight binding to the SND1-purified protein with a value of 279 ± 17 nM.

View Article and Find Full Text PDF

Background: Bushen-Huoxue-Mingmu-Formula (MMF) has achieved definite clinical efficacy. However, its mechanism is still unclear.

Objective: Investigating the molecular mechanism of MMF to protect retinal ganglion cells (RGCs).

View Article and Find Full Text PDF

Cerebral ischemia-reperfusion injury (CIRI) constitutes a significant etiology of exacerbated cerebral tissue damage subsequent to intravenous thrombolysis and endovascular mechanical thrombectomy in patients diagnosed with acute ischemic stroke. The treatment of CIRI has been extensively investigated through a multitude of clinical studies. Acupuncture has been demonstrated to be effective in treating CIRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!