Mechanisms of insulin resistance related to white, beige, and brown adipocytes.

Mol Metab

Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA. Electronic address:

Published: April 2020

Background: The diminished glucose lowering effect of insulin in obesity, called "insulin resistance," is associated with glucose intolerance, type 2 diabetes, and other serious maladies. Many publications on this topic have suggested numerous hypotheses on the molecular and cellular disruptions that contribute to the syndrome. However, significant uncertainty remains on the mechanisms of its initiation and long-term maintenance.

Scope Of Review: To simplify insulin resistance analysis, this review focuses on the unifying concept that adipose tissue is a central regulator of systemic glucose homeostasis by controlling liver and skeletal muscle metabolism. Key aspects of adipose function related to insulin resistance reviewed are: 1) the modes by which specific adipose tissues control hepatic glucose output and systemic glucose disposal, 2) recently acquired understanding of the underlying mechanisms of these modes of regulation, and 3) the steps in these pathways adversely affected by obesity that cause insulin resistance.

Major Conclusions: Adipocyte heterogeneity is required to mediate the multiple pathways that control systemic glucose tolerance. White adipocytes specialize in sequestering triglycerides away from the liver, muscle, and other tissues to limit toxicity. In contrast, brown/beige adipocytes are very active in directly taking up glucose in response to β adrenergic signaling and insulin and enhancing energy expenditure. Nonetheless, white, beige, and brown adipocytes all share the common feature of secreting factors and possibly exosomes that act on distant tissues to control glucose homeostasis. Obesity exerts deleterious effects on each of these adipocyte functions to cause insulin resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6997501PMC
http://dx.doi.org/10.1016/j.molmet.2019.12.014DOI Listing

Publication Analysis

Top Keywords

insulin resistance
16
systemic glucose
12
white beige
8
beige brown
8
brown adipocytes
8
glucose
8
glucose homeostasis
8
tissues control
8
insulin
6
mechanisms insulin
4

Similar Publications

Modern treatment, a healthy diet, and physical activity routines lower the risk factors for metabolic syndrome; however, this condition is associated with all-cause and cardiovascular mortality worldwide. This investigation involved a randomized controlled trial, double-blind, parallel study. Fifty-eight participants with risk factors of metabolic syndrome according to the inclusion criteria were randomized into two groups and given probiotics (Lacticaseibacillus paracasei MSMC39-1 and Bifidobacterium animalis TA-1) (n = 31) or a placebo (n = 27).

View Article and Find Full Text PDF

To assess whether metabolic syndrome can be used as a reference index to evaluate the efficacy of neoadjuvant chemotherapy treatment for breast cancer (BC). Seventy cases of female BC patients who received neoadjuvant chemotherapy treatment and surgical treatment at the Glandular Surgery Department of Hebei Provincial People's Hospital from January 2021 to December 2023 were retrospectively collected, and clinical data such as puncture pathology were recorded. The clinical data were analyzed by 1-way analysis using the χ2 test, and further multifactorial logistic regression analysis was performed for statistically significant differences.

View Article and Find Full Text PDF

Background: This study aimed to assess the comparative effectiveness of massage combined with lifestyle intervention and lifestyle intervention alone in patients with simple obesity.

Methods: The PubMed, Embase, Cochrane Library, CNKI, VIP Database, and Wanfang Data were searched. Meta-analysis was conducted in accordance with the 2020 Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines.

View Article and Find Full Text PDF

Regulatory T cells (T) accumulate in the visceral adipose tissue (VAT) to maintain systemic metabolic homeostasis but decline during obesity. Here, we explored the metabolic pathways controlling the homeostasis, composition, and function of VAT T under normal and high-fat diet feeding conditions. We found that cholesterol metabolism was specifically up-regulated in ST2 VAT T subsets.

View Article and Find Full Text PDF

Bisphenol A (BPA) is an "environmental obesogen" and this study aims to investigate the intergenerational impacts of BPA-induced metabolic syndrome (MetS), specifically focusing on unraveling mechanisms. Exposure to BPA induces metabolic disorders in the paternal mice, which are then transmitted to offspring, leading to late-onset MetS. Mechanistically, BPA upregulates Srebf1, which in turn promotes the Pparg-dependent transcription of Dicer1 in spermatocytes, increasing the levels of multiple sperm microRNAs (miRNAs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!