Visualizing and manipulating the behavior of proteins is crucial to understanding the physiology of the cell. Methods of biorthogonal protein labeling are important tools to attain this goal. In this review, we discuss advances in probe technology specific for self-labeling protein tags, focusing mainly on the application of HaloTag and SNAP-tag systems. We describe the latest developments in small-molecule probes that enable fluorogenic (no wash) imaging and super-resolution fluorescence microscopy. In addition, we cover several methodologies that enable the perturbation or manipulation of protein behavior and function towards the control of biological pathways. Thus, current technical advances in the HaloTag and SNAP-tag systems means that they are becoming powerful tools to enable the visualization and manipulation of biological processes, providing invaluable scientific insights that are difficult to obtain by traditional methodologies. As the multiplex of self-labeling protein tag systems continues to be developed and expanded, the utility of these protein tags will allow researchers to address previously inaccessible questions at the forefront of biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367766 | PMC |
http://dx.doi.org/10.1002/cbic.202000037 | DOI Listing |
Biophys Physicobiol
September 2024
Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan.
Single-molecule imaging provides information on diffusion dynamics, oligomerization, and protein-protein interactions in living cells. To simultaneously monitor different types of proteins at the single-molecule level, orthogonal fluorescent labeling methods with different photostable dyes are required. G-protein-coupled receptors (GPCRs), a major class of drug targets, are prototypical membrane receptors that have been studied using single-molecule imaging techniques.
View Article and Find Full Text PDFVavilovskii Zhurnal Genet Selektsii
February 2024
All-Russian Research Institute of Agricultural Biotechnology, Moscow, Russia.
Study of RNA-protein interactions and identification of RNA targets are among the key aspects of understanding RNA biology. Currently, various methods are available to investigate these interactions with, RNA immunoprecipitation (RIP) being the most common. The search for RNA targets has largely been conducted using antibodies to an endogenous protein or to GFP-tag directly.
View Article and Find Full Text PDFTalanta
February 2024
School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, 710115, China. Electronic address:
Cell membrane chromatography (CMC) is an effective method for studying receptors with multiple transmembrane structure such as MAS-related G protein-coupled receptor X2 (MrgX2). CMC relies on the maintenance of the complete biological structure of a membrane receptor; however, it needs to be further improved to obtain a more convenient and stable CMC model. In the present study, the haloalkane dehalogenase protein tag (HALO-tag) technology was used to construct a new MrgX2/CMC model.
View Article and Find Full Text PDFBiochemistry
June 2023
Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States.
Genetic tags are transformative tools for investigating the function, localization, and interactions of cellular proteins. Most studies today are reliant on selective labeling of more than one protein to obtain comprehensive information on a protein's behavior in situ. Some proteins can be analyzed by fusion to a protein tag, such as green fluorescent protein, HaloTag, or SNAP-Tag.
View Article and Find Full Text PDFJ Am Chem Soc
January 2023
Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
We designed caging-group-free photoactivatable live-cell permeant dyes with red fluorescence emission and ∼100 nm Stokes shifts based on a 1-vinyl-10-silaxanthone imine core structure. The proposed fluorophores undergo byproduct-free one- and two-photon activation, are suitable for multicolor fluorescence microscopy in fixed and living cells, and are compatible with super-resolution techniques such as STED (stimulated emission depletion) and PALM (photoactivated localization microscopy). Use of photoactivatable labels for strain-promoted tetrazine ligation and self-labeling protein tags (HaloTag, SNAP-tag), and duplexing of an imaging channel with another large Stokes shift dye have been demonstrated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!