A triple recognition voltammetric method for the determination of brain natriuretic peptide (BNP) is described. Gold nanoparticles (AuNPs) and magnetic nanoparticles (MagNPs), sized 26 and 310 nm, respectively, were synthesized and characterized by transmission electron microscopy (TEM), FT-IR, dynamic light scattering (DLS), and Z-potential measurements. Antibody-modified MagNPs and methylene blue-labeled aptamer (Apt-MB)-modified AuNPs were used as an identifier, a signal reporter, and an amplifier, respectively. In the presence of BNP, the magnetic gold nanocomposite is formed through cascade conjugation via specific interaction. It then hybridized with complementary DNA (cDNA) on the interface, thereby amplifying the current signal of Apt-MB and increasing the selectivity of the immunoassay. Results obtained demonstrate the development of a highly selective method with a detection limit of 0.56 pg mL and a linear response over the concentration range 1-10,000 pg mL. The standard deviation of the method is < 6% while the recovery ranged from 92.2 to 104.2%. Graphical abstract Schematic representation of triple recognition electrochemical immunosensor based on two functionalized nanoparticles (antibody-modified magnetic nanoparticle (MNP-Ab) and aptamer-modified gold nanoparticle (AuNPs-Apt)) for determination of brain natriuretic peptide (BNP).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-020-4221-z | DOI Listing |
Anal Chem
January 2025
Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350117, China.
Multiple myeloma is a hematologic malignancy characterized by the proliferation of abnormal plasma cells in the bone marrow. Despite therapeutic advancements, there remains a critical need for reliable, noninvasive methods to monitor multiple myeloma. Circulating plasma cells (CPCs) in peripheral blood are robust and independent prognostic markers, but their detection is challenging due to their low abundance.
View Article and Find Full Text PDFPLoS One
January 2025
Glycologix, Inc., 100 Cummings Center, Beverly, Massachusetts, United States of America.
Chemical modification of naturally derived glycosaminoglycans (GAGs) expands their potential utility for applications in soft tissue repair and regenerative medicine. Here we report the preparation of a novel crosslinked chondroitin sulfate (~200 to 2000 kilodaltons) that is both soluble in aqueous solution and microfilterable. We refer to these materials as "SuperGAGs.
View Article and Find Full Text PDFJ Cardiovasc Dev Dis
December 2024
Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy.
Cardiac involvement in cancer is increasingly important in the diagnosis and follow-up of patients. A thorough cardiovascular evaluation using multimodal imaging is crucial to assess any direct cardiac involvement from oncological disease progression and to determine the cardiovascular risk of patients undergoing oncological therapies. Early detection of cardiac dysfunction, particularly due to cardiotoxicity from chemotherapy or radiotherapy, is essential to establish the disease's overall prognostic impact.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
Microbial contamination is an important factor threatening the safety of Chinese medicine preparations, and microfluidic detection methods have demonstrated excellent advantages in the application of rapid bacterial detection. In our study, a novel optical biosensor was developed for the rapid and sensitive detection of in traditional Chinese medicine on a microfluidic chip. Immune gold@platinum nanocatalysts (Au@PtNCs) were utilized for specific bacterial labeling, while magnetic nano-beads (MNBs) with a novel high-gradient magnetic field were employed for the specific capture of bacteria.
View Article and Find Full Text PDFElectromagn Biol Med
January 2025
Department of Mathematics, University of Gour Banga, Malda, India.
Biomagnetic fluid dynamics (BFD) is an emerging and promising field within fluid mechanics, focusing on the dynamics of bio-fluids like blood in the presence of magnetic fields. This research is crucial in the medical arena for applications such as medication delivery, diagnostic and therapeutic procedures, prevention of excessive bleeding, and treatment of malignant tumors using magnetic particles. This study delves into the intricacies of blood flow induced by cilia, carrying trihybrid nanoparticles (gold, copper, and titania), within a catheterized arterial annulus under a robust magnetic field.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!