A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thermodynamics study of biokerosene from coconut and palm kernel oils and JP-8 aircraft fuels in the gas phase by the DFT method. | LitMetric

Thermodynamics study of biokerosene from coconut and palm kernel oils and JP-8 aircraft fuels in the gas phase by the DFT method.

J Mol Model

Laboratório de Preparação e Computação de Nanomateriais, Faculdade de Física - ICEN, Universidade Federal do Pará, C.P. 479, Belém, PA, 66075-110, Brazil.

Published: March 2020

In this work, we performed a theoretical density functional theory (DFT) and semi-empirical (PM3) analysis to calculate thermodynamic properties of biokerosene from coconut and palm kernel oils, Jet Propulsion Fuel 8 (JP-8), and mixtures of these fuels. All simulations were performed in thermal equilibrium and for a temperature range of 0.5-1500 K, considering the canonical ensemble model. We predicted the thermal properties energy, enthalpy, enthalpy change, Gibbs free energy, entropy, and specific heat at constant pressure with respect to temperature. In addition, we compared the performances of the DFT functional hybrid B3LYP and the basis set 6-311++G(d,p) and PM3 methods, in order to determine their accuracy for thermodynamic predictions relating to the fuels. Calculations for combustion enthalpy were carried out using the following methods: B3LYP/6-311++G(d,p), B3LYP/6-31+G(d), CBS-QB3, G3, G4, and G3/G4. The results showed good agreement with measured values, indicating that DFT may be a good method to calculate and predict thermodynamic properties of the combustion reactions of kerosene and biokerosene.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-020-4327-6DOI Listing

Publication Analysis

Top Keywords

biokerosene coconut
8
coconut palm
8
palm kernel
8
kernel oils
8
thermodynamic properties
8
thermodynamics study
4
study biokerosene
4
oils jp-8
4
jp-8 aircraft
4
aircraft fuels
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!