Straw decreased N2O emissions from flooded paddy soils via altering denitrifying bacterial community compositions and soil organic carbon fractions.

FEMS Microbiol Ecol

Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, No. 50, Zhongling Street, Xuanwu District, Nanjing, Jiangsu 210014, People's Republic of China.

Published: May 2020

Straw return is widely applied to increase soil fertility and soil organic carbon storage. However, its effect on N2O emissions from paddy soil and the associated microbial mechanisms are still unclear. In this study, wheat straw was amended to two paddy soils (2% w/w) from Taizhou (TZ) and Yixing (YX), China, which were flooded and incubated for 30 d. Real-time PCR and Illumina sequencing were used to characterize changes in denitrifying functional gene abundance and denitrifying bacterial communities. Compared to unamended controls, straw addition significantly decreased accumulated N2O emissions in both TZ (5071 to 96 mg kg-1) and YX (1501 to 112 mg kg-1). This was mainly due to reduced N2O production with decreased abundance of major genera of nirK and nirS-bacterial communities and reduced nirK and nirS gene abundances. Further analyses showed that nirK-, nirS- and nosZ-bacterial community composition shifted mainly along the easily oxidizable carbon (EOC) arrows following straw amendment among four different soil organic carbon fractions, suggesting that increased EOC was the main driver of alerted denitrifying bacterial community composition. This study revealed straw return suppressed N2O emission via altering denitrifying bacterial community compositions and highlighted the importance of EOC in controlling denitrifying bacterial communities.

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsec/fiaa046DOI Listing

Publication Analysis

Top Keywords

denitrifying bacterial
20
n2o emissions
12
bacterial community
12
soil organic
12
organic carbon
12
paddy soils
8
altering denitrifying
8
community compositions
8
carbon fractions
8
straw return
8

Similar Publications

Dissimilatory nitrate reduction pathways drive high nitrous oxide emissions and nitrogen retention under the flash drought in the largest freshwater lake in China.

Water Res

December 2024

Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 100039, China; Poyang Lake Wetland Research Station, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Jiujiang 332899, China. Electronic address:

Flash drought (FD) events induced by climate change may disrupt the normal hydrological regimes of floodplain lakes and affect the plant-microbe mediated dissimilatory nitrate reduction (DNR), i.e., denitrification, anammox and dissimilatory nitrate reduction to ammonium (DNRA), thus having important consequences for nitrous oxide (NO) emissions and nitrogen (N) retention.

View Article and Find Full Text PDF

Elevated concentrations of pharmaceutically active compounds (PhACs) in the water bodies are posing a serious threat to the aquatic microbiota and other organisms. In this context, anaerobic ammonium oxidizing (anammox) bacteria carry a great potential to degrade PhACs through their innate metabolic pathways. This study investigates the influence of short-term exposure to lower and higher concentrations (0.

View Article and Find Full Text PDF

Temperature has an enhanced role in sediment NO and N fluxes in wider rivers.

Water Res

January 2025

Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China.

Riverine NO and N fluxes, key components of the global nitrogen budget, are known to be influenced by river size (often represented by average river width), yet the specific mechanisms behind these effects remain unclear. This study examined how environmental and microbial factors influenced sediment NO and N fluxes across rivers with varying widths (2.8 to 2,000 m) in China.

View Article and Find Full Text PDF

Bacterial denitrification is a main pathway for soil NO sinks, which is crucial for assessing and controlling NO emissions. Biobased polyhydroxyalkanoate (PHA) microplastic particles (MPs) degrade slowly in conventional environments, remaining inert for extended periods. However, the impacts of PHA microplastic aging on the bacterial NO sink capacity before degradation remain poorly understood.

View Article and Find Full Text PDF

Water scarcity in the Mediterranean area has increased the number of intermittent rivers. Recently, hyporheic zones (HZ) of intermittent rivers have gained attention since a substantial part of the stream's natural purification capacity is located within these zones. Thus, understanding the flow dynamics in HZs is crucial for gaining insights into the degradation of organic micropollutants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!