Blood carries oxygen and nutrients to the trillions of cells in our body to sustain vital life processes. Lack of blood perfusion can cause irreversible cell damage. Therefore, blood perfusion measurement has widespread clinical applications. In this paper, we develop PulseCam - a new camera-based, motion-robust, and highly sensitive blood perfusion imaging modality with 1 mm spatial resolution and 1 frame-per-second temporal resolution. Existing camera-only blood perfusion imaging modality suffers from two core challenges: (i) motion artifact, and (ii) small signal recovery in the presence of large surface reflection and measurement noise. PulseCam addresses these challenges by robustly combining the video recording from the camera with a pulse waveform measured using a conventional pulse oximeter to obtain reliable blood perfusion maps in the presence of motion artifacts and outliers in the video recordings. For video stabilization, we adopt a novel brightness-invariant optical flow algorithm that helps us reduce error in blood perfusion estimate below 10% in different motion scenarios compared to 20-30% error when using current approaches. PulseCam can detect subtle changes in blood perfusion below the skin with at least two times better sensitivity, three times better response time, and is significantly cheaper compared to infrared thermography. PulseCam can also detect venous or partial blood flow occlusion that is difficult to identify using existing modalities such as the perfusion index measured using a pulse oximeter. With the help of a pilot clinical study, we also demonstrate that PulseCam is robust and reliable in an operationally challenging surgery room setting. We anticipate that PulseCam will be used both at the bedside as well as a point-of-care blood perfusion imaging device to visualize and analyze blood perfusion in an easy-to-use and cost-effective manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7075982 | PMC |
http://dx.doi.org/10.1038/s41598-020-61576-0 | DOI Listing |
Pharmaceutics
January 2025
Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505, USA.
The blood-brain barrier (BBB) is selectively permeable, but it also poses significant challenges for treating CNS diseases. Low-intensity focused ultrasound (LiFUS), paired with microbubbles is a promising, non-invasive technique for transiently opening the BBB, allowing enhanced drug delivery to the central nervous system (CNS). However, the downstream physiological effects following BBB opening, particularly secondary responses, are not well understood.
View Article and Find Full Text PDFJ Clin Med
January 2025
Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Universitaire de Sherbrooke, 12e Avenue Nord, Porte 6, Sherbrooke, QC J1H 5N4, Canada.
: Cerebral intra-arterial chemotherapy (CIAC) has been demonstrated to achieve tumoricidal concentrations in cerebral tumour cells that are otherwise unachievable due to the presence of the blood-brain barrier. In this study, we sought to analyze the safety of CIAC in a cohort of patients treated at the Centre intégré universitaire de santé et de services sociaux de l'Estrie-Centre hospitalier universitaire de Sherbrooke (CIUSSS-CHUS). : Treatments consisted of monthly CIAC.
View Article and Find Full Text PDFJ Clin Med
January 2025
Division of Hand, Plastic and Aesthetic Surgery, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
The autologous reconstruction of the female breast using a microsurgical DIEP flap is a reliable and safe method. To detect impairments early and preserve the microvascular flap through timely revision, a better understanding of physiologic perfusion dynamics is necessary. This exploratory study examines changes in microcirculation in free DIEP flaps within the first 72 h after vascular anastomosis using laser Doppler flowmetry and white-light spectrophotometry.
View Article and Find Full Text PDFLife (Basel)
January 2025
Department of Radiology, University Medical Center Regensburg, 93053 Regensburg, Germany.
Background: Portal vein thrombosis (PVT) leads to portal hypertension (PH) with its sequelae. Computed tomography spleno-mesenterico-portography (CT-SMPG) combines sequential CT spleno-portography and CT mesenterico-portography. CT-SMPG comprehensively illustrates the venous hemodynamic changes due to PH.
View Article and Find Full Text PDFMedicina (Kaunas)
January 2025
Laboratório de Inovação Tecnológica em Reabilitação, Departamento de Fisioterapia, Universidade Federal do Rio Grande do Norte (UFRN), Campus Universitário Central, Natal 59078970, RN, Brazil.
: This study aimed to evaluate and compare the functional capacity of post-COVID-19 patients with a control group and analyze cardiac hemodynamics and muscle tissue oxygenation responses during assessment protocols in both groups. : A cross-sectional study was conducted involving patients with COVID-19 and a control group who were all aged ≥18 years. Participants underwent two functional capacity tests: the one-minute sit-stand test (1-STS) and the six-minute walk test (6MWT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!