The transmission of sensory information through the visual system takes time. As a result of these delays, the visual information available to the brain always lags behind the timing of events in the present moment. Compensating for these delays is crucial for functioning within dynamic environments, since interacting with a moving object (e.g., catching a ball) requires real-time localization of the object. One way the brain might achieve this is via prediction of anticipated events. Using time-resolved decoding of electroencephalographic (EEG) data, we demonstrate that the visual system represents the anticipated future position of a moving object, showing that predictive mechanisms activate the same neural representations as afferent sensory input. Importantly, this activation is evident before sensory input corresponding to the stimulus position is able to arrive. Finally, we demonstrate that, when predicted events do not eventuate, sensory information arrives too late to prevent the visual system from representing what was expected but never presented. Taken together, we demonstrate how the visual system can implement predictive mechanisms to preactivate sensory representations, and argue that this might allow it to compensate for its own temporal constraints, allowing us to interact with dynamic visual environments in real time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7132318 | PMC |
http://dx.doi.org/10.1073/pnas.1917777117 | DOI Listing |
Comput Biol Med
January 2025
Emerging Technologies Research Lab (ETRL), College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia; Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia. Electronic address:
- Brain tumors (BT), both benign and malignant, pose a substantial impact on human health and need precise and early detection for successful treatment. Analysing magnetic resonance imaging (MRI) image is a common method for BT diagnosis and segmentation, yet misdiagnoses yield effective medical responses, impacting patient survival rates. Recent technological advancements have popularized deep learning-based medical image analysis, leveraging transfer learning to reuse pre-trained models for various applications.
View Article and Find Full Text PDFComput Biol Med
January 2025
Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Institute for Health Research (idiPAZ), (La Paz University Hospital- Universidad Autónoma de Madrid), Spain. Electronic address:
The quantitative evaluation of motor function in experimental stroke models is essential for the preclinical assessment of new therapeutic strategies that can be transferred to clinical research; however, conventional assessment tests are hampered by the evaluator's subjectivity. We present an artificial intelligence-based system for the automatic, accurate, and objective analysis of target parameters evaluated by the ledged beam walking test, which offers higher sensitivity than the current methodology based on manual and visual counting. This system employs a residual deep network model, trained with DeepLabCut (DLC) to extract target paretic hindlimb coordinates, which are categorized to provide a ratio measurement of the animal's neurological deficit.
View Article and Find Full Text PDFRheumatology (Oxford)
January 2025
Department of Rheumatology and Immunology, Singapore General Hospital, Singapore.
Objectives: To facilitate earlier diagnosis of autoimmune rheumatic diseases (ARDs), we aimed to 1) develop START, a novel multimedia-based symptom appraisal tool for ARDs and 2) pilot test START among established ARD cases and non-ARD controls.
Methods: We developed START using a social cognitive theory-based theoretical framework and consensus-based lists of ARDs and manifestations from our previous work. START was revised through reviews by an expert panel of rheumatologists and cognitive debriefing interviews (CDIs) with patients newly referred for assessment of ARDs.
Bioinformatics
January 2025
Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium.
Summary: Gene and genome duplications are major evolutionary forces that shape the diversity and complexity of life. However, different duplication modes have distinct impacts on gene function, expression, and regulation. Existing tools for identifying and classifying duplicated genes are either outdated or not user-friendly.
View Article and Find Full Text PDFEur Stroke J
January 2025
Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Background: We aimed to assess impairments on health-related quality of life, and mental health resulting from Retinal artery occlusion (RAO) with monocular visual field loss and posterior circulation ischemic stroke (PCIS) with full or partial hemianopia using patient-reported outcome measures (PROMs).
Methods: In a prospective study, consecutive patients with acute RAO on fundoscopy and PCIS on imaging were recruited during their surveillance on a stroke unit over a period of 15 months. Baseline characteristics were determined from medical records and interviews.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!