Amplified detection of phosphocreatine and creatine after supplementation using CEST MRI at high and ultrahigh magnetic fields.

J Magn Reson

The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 991 N. Broadway Baltimore, MD 21205, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N. Broadway Ave., Baltimore, MD 21205, USA. Electronic address:

Published: April 2020

Creatine is an important metabolite involved in muscle contraction. Administration of exogenous creatine (Cr) or phosphocreatine (PCr) has been used for improving exercise performance and protecting the heart during surgery including during valve replacements, coronary artery bypass grafting and repair of congenital heart defects. In this work we investigate whether it is possible to use chemical exchange saturation transfer (CEST) MRI to monitor uptake and clearance of exogenous creatine and phosphocreatine following supplementation. We were furthermore interested in determining the limiting conditions for distinguishing between creatine (1.9 ppm) and phosphocreatine (2.6 ppm) signals at ultra-high fields (21 T) and determine their concentrations could be reliably obtained using Bloch equation fits of the experimental CEST spectra. We have tested these items by performing CEST MRI of hind limb muscle and kidneys at 11.7 T and 21.1 T both before and after intravenous administration of PCr. We observed up to 4% increase in contrast in the kidneys at 2.6 ppm which peaked ~30 min after administration and a relative ratio of 1.3 in PCr:Cr signal. Overall, these results demonstrate the feasibility of independent monitoring of PCr and Cr concentration changes using CEST MRI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7197212PMC
http://dx.doi.org/10.1016/j.jmr.2020.106703DOI Listing

Publication Analysis

Top Keywords

cest mri
16
exogenous creatine
8
creatine phosphocreatine
8
creatine
5
cest
5
amplified detection
4
phosphocreatine
4
detection phosphocreatine
4
phosphocreatine creatine
4
creatine supplementation
4

Similar Publications

Innovative perspectives on metal free contrast agents for MRI: Enhancing imaging efficacy, and AI-driven future diagnostics.

Acta Biomater

January 2025

Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China. Electronic address:

The U.S. Food and Drug Administration (FDA) has issued a boxed warning and mandated additional safety measures for all gadolinium-based contrast agents (GBCAs) used in clinical magnetic resonance imaging (MRI) due to their prolonged retention in the body and associated adverse health effects.

View Article and Find Full Text PDF

Improving quantification accuracy of a nuclear Overhauser enhancement signal at -1.6 ppm at 4.7 T using a machine learning approach.

Phys Med Biol

January 2025

Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, AAA-3112, Nashville, Tennessee, 37232-2102, UNITED STATES.

Objective: A new nuclear Overhauser enhancement (NOE)-mediated saturation transfer MRI signal at -1.6 ppm, potentially from choline phospholipids and termed NOE(-1.6), has been reported in biological tissues at high magnetic fields.

View Article and Find Full Text PDF

Evaluation of Brain Impairment Using Proton Exchange Rate MRI in a Kainic Acid-Induced Rat Model of Epilepsy.

Mol Imaging Biol

January 2025

Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.

Purpose: Proton exchange rate (K) is a valuable biophysical metric. K MRI may augment conventional structural MRI by revealing brain impairments at the molecular level. This study aimed to investigate the feasibility of K MRI in evaluating brain injuries at multiple epilepsy stages.

View Article and Find Full Text PDF

Elucidating metabolite and pH variations in stroke through guanidino, amine and amide CEST MRI: A comparative multi-field study at 9.4T and 3T.

Neuroimage

January 2025

F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA. Electronic address:

This study aims to investigate the variations in guanidino (Guan), amine and amide chemical exchange saturation transfer (CEST) contrasts in ischemic stroke using permanent middle cerebral artery occlusion (pMCAO) and transient MCAO (tMCAO) models at high (9.4T) and clinical (3T) MRI fields. CEST contrasts were extracted using the Polynomial and Lorentzian Line-shape Fitting (PLOF) method.

View Article and Find Full Text PDF

Altered Nigral Amide Proton Transfer Imaging Signal Concordant With Motor Asymmetry in Parkinson's Disease: A Multipool CEST MRI Study.

NMR Biomed

February 2025

Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.

Asymmetry is a natural characteristic of Parkinson's disease (PD), which can be used to distinguish PD from atypical parkinsonism. Chemical exchange saturation transfer (CEST) has demonstrated value in reflecting the subtle changes related to neuron loss and abnormal protein accumulation in PD but has not been used to investigate asymmetry in PD. This study aimed to examine asymmetrical changes in the mesencephalic nucleus of PD patients with motor asymmetry using four-pool CEST analysis and to explore the relationship between imaging asymmetry and motor asymmetry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!