A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The mechanism of soil nitrogen transformation under different biocrusts to warming and reduced precipitation: From microbial functional genes to enzyme activity. | LitMetric

Soil nitrogen (N) mineralization is a microbially-mediated biogeochemical process that is strongly influenced by changing climates. However, little information is available on the mechanisms behind the response of N mineralization to prolonged warming coupled with drought in soils covered by biocrusts. We used open top chambers to investigate the rate of soil N transformation (ammonification, nitrification and mineralization), enzyme activity and gene abundance in response to warming coupled with reduced precipitation over three years (2016-2018). Warming and drought significantly reduced the N transformation rate, extracellular enzyme activity, and gene abundance in moss-covered soil. For cyanobacteria-covered soil, however, it inhibited enzyme activity and increased the abundance of the nitrification-related genes and therefore nitrification rate. Our treatments had no obvious effects on N transformation and enzyme activity, but reduced gene abundance in bare soil. Biocrusts may facilitate N transformation while the degradation of moss crust caused by climate warming will dampen any regulating effect of biocrusts on the belowground microbial community. Furthermore, belowground microbial communities can mediate N transformation under ongoing warming and reduced precipitation by suppressing ammonification- and nitrification-related gene families, and by stimulating nitrification-related gene families involved in cyanobacteria-covered soil. This study provides a basis for identifying the functional genes involved in key processes in the N cycle in temperate desert ecosystems, and our results further highlight the importance of different biocrusts organisms in the N cycle in temperate deserts as Earth becomes hotter and drier.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.137849DOI Listing

Publication Analysis

Top Keywords

enzyme activity
20
reduced precipitation
12
gene abundance
12
soil nitrogen
8
warming reduced
8
functional genes
8
warming coupled
8
activity gene
8
cyanobacteria-covered soil
8
belowground microbial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!