Enhanced aerobic granulation at low temperature by stepwise increasing of salinity.

Sci Total Environ

Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China. Electronic address:

Published: June 2020

High salinity and low temperature are generally considered to have negative effects on the formation, stability and performance of aerobic granular sludge (AGS). This study investigated whether and how salinity acclimation strategies can enhance aerobic granulation at low temperature (12 °C) in three sequencing batch reactors (SBRs). Stepwise increased concentrations of NaCl (2-10 and 4-20 g/L) were added to the influent of R1 and R2 with steps of 1 and 2 g/L per week respectively, while R0 was set as a control (salt-free). The granulation processes in R1 and R2 were rapidly started up within 9 days, and were completed within 21 and 18 days, respectively. By contrast, R0 took 25 days and 49 days to start and complete granulation. The salinity acclimation strategies improved sludge hydrophobicity, reduced repulsion barrier between cells, and stimulated EPS production during granulation processes, which simultaneously promoted the formation of AGS. When the influent salinity reached 14 g/L on day 35, granule hydrophobicity, density and size in R2 sharply decreased and granules began to disintegrate afterwards. When operated under salt-free condition, sludge bulking occurred in R0 since day 60. The treatment performance was thus impaired in these two reactors, especially in R2 with significant biomass loss. Conversely, the AGS developed in R1 maintained stable structure with high biomass concentration (8.0 gSS/L) and excellent treatment performance for COD (90%), ammonium (95%) and total nitrogen (70%). Genera Thauera, Azoarcus, and Nitrosomonas were more enriched, while Flavobacterium and Meganema were more suppressed in R1, which would have contributed to granule stability and treatment performance. In conclusion, great care has to be taken for cultivating and operating AGS at low temperature for treating saline wastewater. Increasing salinity with a lower salt gradient provides a possibility for rapid granulation of AGS with excellent treatment performance under such conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.137660DOI Listing

Publication Analysis

Top Keywords

low temperature
16
treatment performance
16
aerobic granulation
8
granulation low
8
increasing salinity
8
salinity acclimation
8
acclimation strategies
8
granulation processes
8
excellent treatment
8
granulation
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!