Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Polybrominated diphenyl ethers (PBDEs) are a series of highly persistent organic pollutants (POPs) ubiquitously distributed in marine environments. As key primary producers, microalgae are the start of PBDEs bioaccumulations and vulnerable to their toxicities. In order to deeply investigate the toxic mechanism of PBDEs on microalgal cells, the occurrence of programmed cell death (PCD) in a model diatom Thalassiosira pseudonana and its possible mediating mechanism were studied. The results indicated: cell death of T. pseudonana happened under the stress of BDE-47, which was proved to be PCD based on the correlations with three biochemical markers (DNA fragmentation, phosphatidylserine externalization and caspase activity) and three molecular markers [Metacaspase 2 gene (TpMC2), Death-associated protein gene (DAP3) and Death-specific protein 1 gene (TpDSP1)]; Furthermore, the changes of cellular ROS levels were correlated with the PCD markers and the dead cell rates, and the cell membrane and the chloroplast were identified as the major ROS production sites. Therefore, we concluded that PCD might be an important toxic mechanism of PBDEs on microalgal cells, and that chloroplast- and cell membrane-produced ROS was an important signaling molecule to mediate the PCD activation process. Our research firstly indicated microalgal PCD could be induced by PBDEs, and increased our knowledge of the toxic mechanisms by which POPs affect microalgal cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2020.114342 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!