Objective: To investigate mechanism of endoplasmic reticulum (ER) stress-mediated autophagy in spinal cord injury (SCI).
Methods: An in vitro model of spinal cord injury (SCI) was established by recombinant human beta nerve growth factor (NGF)-induced PC12 cells. Immunofluorescence was used to detect properties of PC12 cells induced by NGF. Western blot assay was used to detect expressions of the autophagy-related protein microtubule-associated protein 1 light chain 3 (LC3)I/II, the ER stress-related protein (HSPA5/GRP78), as well as the PI3K/AKT/mTOR signaling pathway-related proteins after mechanical injury at different time points. Then the sample assigned into sham, SCI, LY294002, SCI+LY294002, 4-PBA (4-phenylbutyric acid), and SCI+4-PBA groups. The expressions of the LC3I/II and PI3K/AKT/mTOR signaling pathway-related proteins were detected by Western blot assay.
Results: NGF-induced PC12 cells have neurophysiological characteristics. After administration of the PI3K-specific inhibitor LY294002, phosphorylation levels of AKT and mTOR decreased, and the ratio of LC3II/I was higher in the inhibitor-treated injury group than the simple-injury group. After administration of the ER stress inhibitor 4-PBA, the results were similar to LY294002 group's results compared with SCI group.
Conclusions: Our study showed that NGF-induced PC12 cells can induce autophagy and ER stress after mechanical injury. ER stress inhibitor 4-PBA obtained similar effects to PI3K inhibitor LY294002, enhanced autophagy via PI3K/AKT/mTOR signaling pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wneu.2020.03.038 | DOI Listing |
Acta Biomater
January 2025
Central laboratory of Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China. Electronic address:
Peripheral nerve injury (PNI) as a common clinical issue that presents significant challenges for repair. Factors such as donor site morbidity from autologous transplantation, slow recovery of long-distance nerve damage, and deficiencies in local cytokines and extracellular matrix contribute to the complexity of effective PNI treatment. It is extremely urgent to develop functional nerve guidance conduits (NGCs) as substitutes for nerve autografts.
View Article and Find Full Text PDFBackground: Fibroblast growth factor 21 (FGF21) and Methyltransferase-like 14 (METTL14) have been identified to be involved in spinal cord injury (SCI). However, whether FGF21 functioned in SCI via METTL14-induced N6-methyladenosine (m6A) modification remains unclear.
Materials And Methods: PC12 cells were exposed to lipopolysaccharide (LPS) in vitro.
Int J Biol Macromol
January 2025
State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China. Electronic address:
Morchella esculenta (L.) Pers. is considered a precious edible and medicinal fungus due to its strict growth environment requirements, difficult to cultivate, resulted in expensive in the market.
View Article and Find Full Text PDFBackground: Prostaglandin E (PGE) in the rostral ventrolateral medulla (RVLM) has been recognized as a pivotal pressor substance in hypertension, yet understanding of its effects and origins in the RVLM remains largely elusive. This study aimed to elucidate the pivotal enzymes and molecular mechanisms underlying PGE synthesis induced by central Ang II (angiotensin II) and its implications in the heightened oxidative stress and sympathetic outflow in hypertension.
Methods And Results: RVLM microinjections of PGE and Tempol were administered in Wistar-Kyoto rats.
Gen Physiol Biophys
January 2025
Shanghai University of Traditional Chinese Medicine, Shenzhen Hospital, Shenzhen, Guangdong, China.
Cerebral ischemia-reperfusion (I/R) is a serious complication in patients with ischemic stroke. Senkyunolide A (SenA) can alleviate neuronal cell damage induced by cerebral I/R; however, the exact action mechanism remains unclear. An in vitro cellular injury model was established by inducing PC-12 cells with OGD/R.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!