In a world that canopies numerous opportunities to advance towards a green sustainable life, biopolymer development offers a platform that fits into the paradigm of achieving an eco-friendly environment whilst reducing reliance on the scarce fossil fuel elements for the fabrication of day-to-day products. Today's technological improvements have aided biopolymer end-products to escalate to higher purposes and soon may have their performance level in par with the petroleum-based synthetic polymers. The motive of this paper is to shimmer light on some aspects of biopolymers that include its classes, properties, composites and applications. Depending on the type of class on the basis of various categories, many enthralling chemistries of polymer composition can be substantiated. Essential properties can imparted to the ensuing biopolymer by altering its chemical configuration and method of synthesis while also focusing on its functional purpose. Nowadays, biopolymer composites blend qualities of one biopolymer with another to acquire an enhanced component that showcases unique explicit attributes. There are several techniques to process biopolymer composites, of which in-situ, infiltration and electrospinning methods have captured considerable limelight. Biopolymers and its composites have embarked captivating impressions in regions of biomedical, packaging, agricultural and automotive applications. Although their efficacy is yet to reach their fossil fuel counterparts, biopolymers have laid a distinguishing mark that will continue to inspire creation of novel substances for many years to come.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2020.03.120 | DOI Listing |
Int J Biol Macromol
January 2025
College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China.. Electronic address:
The present study intended to investigate the properties of collagen peptide (CP)-astragaloside (AG) nanocomplexes (CPANs) improved oxidized hydroxypropyl starch (OHS)/chitosan (CS) (OC) film and to explore the preservation of chilled beef. The results indicated that AG significantly enhanced the stability, antioxidant capacity, and antibacterial properties of CP through mechanisms like static quenching and hydrophobic interactions. The incorporation of CPANs improved thickness, swellability, and water vapor blocking, UV-blocking and mechanical properties, antioxidant and antibacterial activity of OC film.
View Article and Find Full Text PDFBraz J Biol
January 2025
Universidade Tecnológica Federal do Paraná - UTFPR, Departmeno de Química e Ciências Biológicas, Francisco Beltrão, PR, Brasil.
Studies show that propolis has antimicrobial, antifungal, antiviral, anti-inflammatory, antioxidant, antitumor, and immunomodulatory properties, and may protect against diseases such as diabetes, cardiovascular disease, and cancer. We aimed to extract compounds of brown propolis with hydroalcoholic solvents and evaluate their cytotoxic activity on tumor and non-tumor cells by MTT test. We tested the solute:solvent ratio (ethanol:water) and extraction time in a Shaker incubator (710 rpm) before conducting a central composite rotational design (CCRD) to optimize time and solvent mixture.
View Article and Find Full Text PDFNanoscale Adv
December 2024
Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST) PO Box 16846-13114 Tehran Iran
A magnetic-biopolymer composite of carboxymethyl cellulose (CMC), designated as FeO@CMC, was synthesized featuring remarkable stability and an active surface with a green biosynthetic method. This composite was engineered to serve as a substrate for stabilizing silver nanoparticles (Ag NPs) with enhanced functional properties. The catalytic efficacy of the nanocatalyst, incorporating Ag NPs at concentrations of 3%, 7%, and 10%, was evaluated for the reduction of the toxic compound 4-nitrophenol to the beneficial 4-aminophenol.
View Article and Find Full Text PDFBioresour Technol
January 2025
Department of Biology, University of Padova, 35131 Padova, Italy. Electronic address:
The fermentation process in alcoholic beverage production converts sugars into ethanol and CO, releasing significant amounts of greenhouse gases. Here, Cupriavidus necator DSM 545 was grown autotrophically using gas derived from alcoholic fermentation, using a fed-batch bottle system. Nutrient starvation was applied to induce intracellular accumulation of poly(3-hydroxybutyrate) (PHB), a bioplastic polymer, for bioconversion of CO-rich waste gas into PHB.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Organic Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
To reduce carbon footprint and human dependence on fossil fuels, the field of bio-based polymers has undergone explosive growth in recent years. Among them, bio-based elastomers have gained tremendous attention for their inherent softness, high strain, and resilience. In this review, the recent progress of representative bio-based elastomers derived from molecular building blocks and biopolymers are recapitulated, with an emphasis on molecular design, synthesis approaches, and mechanical performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!