A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

CdTe and CdTe@ZnS quantum dots induce IL-1ß-mediated inflammation and pyroptosis in microglia. | LitMetric

CdTe and CdTe@ZnS quantum dots induce IL-1ß-mediated inflammation and pyroptosis in microglia.

Toxicol In Vitro

Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China. Electronic address:

Published: June 2020

CdTe quantum dots (QDs) are still widely considered as excellent fluorescent probes because of their far more superior optical performance and fluorescence efficiency than non‑cadmium QDs. Thus, it is important to find ways to control their toxicity. In this study, CdTe QDs and CdTe@ZnS QDs both could cause IL-1ß-mediated inflammation following with pyroptosis in BV2 cells, but the toxic effects caused by CdTe@ZnS QDs was weaker than CdTe QDs, which demonstrated the partial protection of ZnS shell. When investigating the molecular mechanisms of QDs causing the inflammatory injury, the findings suggested that cadmium-containing QDs exposure activated NF-κB that participated in the NLRP3 inflammasome priming and pro-IL-1ß expression. After that, QDs-induced excessive ROS generation triggered the NLRP3 inflammasome activation and resulted in active caspase-1 to process pro-IL-1ß into mature IL-1ß release and inflammatory cell death, i.e. pyroptosis. Fortunately, the inhibitions of caspase-1, NF-κB and ROS or knocking down of NLRP3 all effectively attenuated the increases in the IL-1ß secretion and cell death caused by QDs in BV2 cells. This study provided two methods to alleviate the toxicity of cadmium-containing QDs, in which one is to encapsulate bare-core QDs with a shell and the other is to inhibit their toxic pathways. Since the latter way is more effective than the former one, it is significant to evaluate QDs through a mechanism-based risk assessment to identify controllable toxic targets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2020.104827DOI Listing

Publication Analysis

Top Keywords

qds
12
quantum dots
8
il-1ß-mediated inflammation
8
inflammation pyroptosis
8
cdte qds
8
cdte@zns qds
8
bv2 cells
8
cadmium-containing qds
8
nlrp3 inflammasome
8
cell death
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!