In animals, interferon-γ (IFN-γ) is known as a cytokine involved in antiviral and anticancer activities with a higher biochemical activity in contrast to other IFNs. To produce recombinant human IFN-γ (hIFN-γ) protein in tobacco, factors influencing gene delivery were first evaluated for higher efficiency of transient expression by fluorometric measurement of GUS activity. Higher levels of transient expression were observed in leaves of Nicotiana tabacum cv. Samsun infiltrated with GV3101 strain (optical density equal to 1.0 at 600 nm) under treatment of 200 μM AS at 4 days post agroinfiltration (dpa). The Samsun cv. proved to be amenable with 1.4- and 1.5-fold higher levels of transient expression than Xanthi and N. benthamiana, respectively. In addition, the GV3101 remained the best strain for use in transient assays without any necrotic response in tobacco. The levels of transient hIFN-γ expression were also estimated in the Samsun cv. infiltrated with different Agrobacterium tumefaciens strains carrying various expression constructs. Higher levels of accumulation were obtained with targeting the hIFN-γ protein to endoplasmic reticulum (ER) or apoplastic space than those expressed into cytoplasm. Moreover, antiviral bioassay revealed that recombinant hIFN-γ protein produced in tobacco is biologically active and protects the Vero cells from infection generated by vesicular stomatitis virus (VSV).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pep.2020.105616 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!