A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Towards high-efficient online specific discrimination of zearalenone by using gold nanoparticles@aptamer-based affinity monolithic column. | LitMetric

Sensitive and specific analysis of zearalenone (ZEN) mycotoxin in cereals for ensuring food safety is critical and remains challenging. Herein, a new gold nanoparticles @aptamer-functionalized hybrid affinity monolithic column was proposed and employed for online specific recognition of ZEN by HPLC. Characterization on the morphology, Brunauer-Emmett-Teller (BET) surface area mechanical stability and specific performance of the obtained affinity monolith were investigated. A super-high aptamer coverage density could reach 3636 pmol/μL, which is preferable to gain an effective analysis of ZEN with high specificity and a low interference of co-existed substances including typical α-Zearalenol (α-ZOL) and Aflatoxin B (AFB). The sensitive recognition of trace ZEN was obtained with the limit of detection (LOD) as low as 0.05 ng/mL. Applied to real cereal samples, satisfactory recoveries were obtained in the range of 91.6 ± 1.4%-97.8 ± 2.6% (n = 3) in corn, 93.8 ± 3.1%-95.0 ± 3.6% (n = 3) in wheat, and 90.9 ± 4.7%-94.7 ± 3.8% (n = 3) in rice, respectively. The results on quantitative analysis were similar to that of LC-MS and better than that obtained by using immunoaffinity column (IAC) or molecularly imprinted polymer (MIP). This protocol provided an efficient access to high-efficient online specific recognition of ZEN in cereals by using such an aptamer-affinity capillary monolithic column.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2020.461026DOI Listing

Publication Analysis

Top Keywords

online specific
12
monolithic column
12
high-efficient online
8
affinity monolithic
8
specific recognition
8
recognition zen
8
specific
5
zen
5
specific discrimination
4
discrimination zearalenone
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!