STAT3 for Cardiac Regenerative Medicine: Involvement in Stem Cell Biology, Pathophysiology, and Bioengineering.

Int J Mol Sci

Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan.

Published: March 2020

Heart disease is the most common cause of death in developed countries, but the medical treatments for heart failure remain limited. In this context, the development of cardiac regeneration therapy for severe heart failure is important. Owing to their unique characteristics, including multiple differentiation and infinitive self-renewal, pluripotent stem cells can be considered as a novel source for regenerative medicine. Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling plays critical roles in the induction, maintenance, and differentiation of pluripotent stem cells. In the heart, JAK/STAT3 signaling has diverse cellular functions, including myocardial differentiation, cell cycle re-entry of matured myocyte after injury, and anti-apoptosis in pathological conditions. Therefore, regulating STAT3 activity has great potential as a strategy of cardiac regeneration therapy. In this review, we summarize the current understanding of STAT3, focusing on stem cell biology and pathophysiology, as they contribute to cardiac regeneration therapy. We also introduce a recently reported therapeutic strategy for myocardial regeneration that uses engineered artificial receptors that trigger endogenous STAT3 signal activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7139789PMC
http://dx.doi.org/10.3390/ijms21061937DOI Listing

Publication Analysis

Top Keywords

cardiac regeneration
12
regeneration therapy
12
regenerative medicine
8
stem cell
8
cell biology
8
biology pathophysiology
8
heart failure
8
pluripotent stem
8
stem cells
8
jak/stat3 signaling
8

Similar Publications

Mitochondrial Dysfunction in HFpEF: Potential Interventions Through Exercise.

J Cardiovasc Transl Res

January 2025

Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.

HFpEF is a prevalent and complex type of heart failure. The concurrent presence of conditions such as obesity, hypertension, hyperglycemia, and hyperlipidemia significantly increase the risk of developing HFpEF. Mitochondria, often referred to as the powerhouses of the cell, are crucial in maintaining cellular functions, including ATP production, intracellular Ca regulation, reactive oxygen species generation and clearance, and the regulation of apoptosis.

View Article and Find Full Text PDF

Immuno-fibrotic networks and their protein mediators, such as cytokines and chemokines, have increasingly been appreciated for their critical role in cardiac healing and fibrosis during cardiomyopathy. Immune activation, trafficking, and extravasation are tightly regulated to ensure a targeted and effective response against non-self antigens/pathogens while preserving tolerance towards self-antigens and coordinate fibrotic responses for efficient scar formation, a distinction that is severely compromised during chronic diseases. It is clear that immune cells are not only the critical regulators of post-infarct healing and scarring but are also the key players in regulating fibroblast activation during left-ventricular (LV) remodeling.

View Article and Find Full Text PDF

Objective: To explore the application effectiveness of multidisciplinary team (MDT) in the diagnosis and treatment of chronic refractory wounds, and to provide new ideas for optimizing the clinical diagnosis and treatment of such diseases.

Methods: A retrospective analysis was performed on the clinical data of patients with chronic refractory wounds who underwent surgery at Peking University Third Hospital from January 2015 to October 2023, and a total of 456 patients, including 290 males and 166 females, with an average age of (49.4±16.

View Article and Find Full Text PDF

Microvessel co-transplantation improves poor remuscularization by hiPSC-cardiomyocytes in a complex disease model of myocardial infarction and type 2 diabetes.

Stem Cell Reports

January 2025

Toronto General Hospital Research Institute, University Health Network, 101 College St., Toronto, ON M5G 1L7, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, ON, Canada; Ajmera Transplant Center, University Health Network, Toronto, ON, Canada. Electronic address:

People with type 2 diabetes (T2D) are at a higher risk for myocardial infarction (MI) than age-matched healthy individuals. Here, we studied cell-based cardiac regeneration post MI in T2D rats modeling the co-morbid conditions in patients with MI. We recapitulated the T2D hallmarks and clinical aspects of diabetic cardiomyopathy using high-fat diet and streptozotocin in athymic rats, which were then subjected to MI and intramyocardial implantation of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) with or without rat adipose-derived microvessels (MVs).

View Article and Find Full Text PDF

Thermosensitive Porcine Myocardial Extracellular Matrix Hydrogel Coupled with Proanthocyanidins for Cardiac Tissue Engineering.

Gels

January 2025

Laboratory of Immunotherapy and Tissue Engineering, Department of Cellular and Tissue Biology, Faculty of Medicine, National Autonomous University of Mexico, Av. Universidad 3000, Copilco Universidad, Coyoacán, Ciudad de México 04510, Mexico.

Currently, there are no therapies that prevent the negative myocardial remodeling process that occurs after a heart attack. Injectable hydrogels are a treatment option because they may replace the damaged extracellular matrix and, in addition, can be administered minimally invasively. Reactive oxygen species generated by ischemia-reperfusion damage can limit the therapeutic efficacy of injectable hydrogels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!