African swine fever (ASF) poses a severe threat to the global pig industry for which currently there is no available vaccine. The aetiological ASF virus (ASFV) has a predilection for cells of the myeloid lineage, however little is known about its interaction with polarised macrophages. This study focused on the interactions of porcine monocyte-derived un-activated (moMΦ), classically (moM1), alternatively (moM2), and IFN-a-activated macrophages with two genotype I ASFV strains: virulent 22653/14 and attenuated NH/P68. At a high multiplicity of infection, NH/P68, but not 22653/14, presented a reduced ability to infect moM1 and IFN-a-activated moMF compared to moMF. IFN-a activation resulted in a dose-dependent reduction in the proportion of ASFV-infected cells. Both strains replicated efficiently in all the subsets. While higher levels of IL-1a, IL-1β, and IL-18 were secreted by NH/P68-infected moM1 compared to 22653/14, both strains negatively affected moMF ability to release IL-6, IL-12, TNF-a in response to classical activation or stimulation with a TLR2 agonist. Our results suggest that ASFV 22653/14 covertly replicates in macrophages, compromising the development of effective immune responses. Attenuated NH/P68 has partially lost these mechanisms, which may enhance immune surveillance. A better understating of these mechanisms should aid the rational design of live attenuated ASFV vaccines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7157553PMC
http://dx.doi.org/10.3390/pathogens9030209DOI Listing

Publication Analysis

Top Keywords

african swine
8
swine fever
8
attenuated nh/p68
8
comparison macrophage
4
macrophage responses
4
responses african
4
fever viruses
4
viruses reveals
4
nh/p68
4
reveals nh/p68
4

Similar Publications

Structural basis of RNA polymerase complexes in African swine fever virus.

Nat Commun

January 2025

State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.

African swine fever virus is highly contagious and causes a fatal infectious disease in pigs, resulting in a significant global impact on pork supply. The African swine fever virus RNA polymerase serves as a crucial multifunctional protein complex responsible for genome transcription and regulation. Therefore, it is essential to investigate its structural and functional characteristics for the prevention and control of African swine fever.

View Article and Find Full Text PDF

African swine fever (ASF) is a lethal disease of domestic pigs that is currently challenging swine production in large areas of Eurasia. The causative agent, ASF virus (ASFV), is a large, double-stranded and structurally complex virus. The ASFV genome encodes for more than 160 proteins; however, the functions of most of these proteins are still in the process of being characterized.

View Article and Find Full Text PDF

The lack of data on the whole-genome analysis of genotype II African swine fever virus (ASFV) isolates significantly hinders our understanding of its molecular evolution, and as a result, the range of single nucleotide polymorphisms (SNPs) necessary to describe a more accurate and complete scheme of its circulation. In this regard, this study aimed to identify unique SNPs, conduct phylogenetic analysis, and determine the level of homology of isolates obtained in the period from 2019 to 2022 in the central and eastern regions of Russia. Twenty-one whole-genome sequences of genotype II ASFV isolates were assembled, analyzed, and submitted to GenBank.

View Article and Find Full Text PDF

African swine fever (ASF) emerged in Germany in 2020. A few weeks after the initial occurrence, infected wild boar were detected in Saxony. In this study, data from wild boar surveillance in Saxony were analyzed.

View Article and Find Full Text PDF

One of the key surveillance strategies for the early detection of an African swine fever (ASF) incursion into a country is the sampling of wild or feral pig populations. In Australia, the remote northern regions are considered a risk pathway for ASF incursion due to the combination of high numbers of feral pigs and their close proximity to countries where ASF is present. These regions primarily consist of isolated arid rangelands with high average environmental temperatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!