Purinergic Signaling and Related Biomarkers in Depression.

Brain Sci

Department of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900 Monza, Italy.

Published: March 2020

It is established that purinergic signaling can shape a wide range of physiological functions, including neurotransmission and neuromodulation. The purinergic system may play a role in the pathophysiology of mood disorders, influencing neurotransmitter systems and hormonal pathways of the hypothalamic-pituitary-adrenal axis. Treatment with mood stabilizers and antidepressants can lead to changes in purinergic signaling. In this overview, we describe the biological background on the possible link between the purinergic system and depression, possibly involving changes in adenosine- and ATP-mediated signaling at P1 and P2 receptors, respectively. Furthermore, evidence on the possible antidepressive effects of non-selective adenosine antagonist caffeine and other purinergic modulators is reviewed. In particular, A2A and P2X7 receptors have been identified as potential targets for depression treatment. Preclinical studies highlight that both selective A2A and P2X7 antagonists may have antidepressant effects and potentiate responses to antidepressant treatments. Consistently, recent studies feature the possible role of the purinergic system peripheral metabolites as possible biomarkers of depression. In particular, variations of serum uric acid, as the end product of purinergic metabolism, have been found in depression. Although several open questions remain, the purinergic system represents a promising research area for insights into the molecular basis of depression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7139781PMC
http://dx.doi.org/10.3390/brainsci10030160DOI Listing

Publication Analysis

Top Keywords

purinergic system
16
purinergic signaling
12
purinergic
9
biomarkers depression
8
a2a p2x7
8
depression
6
signaling biomarkers
4
depression established
4
established purinergic
4
signaling shape
4

Similar Publications

Lipopolysaccharide-Neutralizing Peptide Modulates P2X7 Receptor-Mediated Interleukin-1β Release.

ACS Pharmacol Transl Sci

January 2025

Pharmaceutical Institute, Pharmacology and Toxicology, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany.

Lipopolysaccharide (LPS)-neutralizing peptides are emerging as new potential therapeutic modalities to treat sepsis and skin infections. Purinergic ligand-gated ion channels (P2X receptors) play a critical role in various biological processes, including inflammation. Recent drug development efforts have significantly focused on the modulation of P2X receptors.

View Article and Find Full Text PDF

Neurons as Immunomodulators: From Rapid Neural Activity to Prolonged Regulation of Cytokines and Microglia.

Annu Rev Biomed Eng

January 2025

2Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA; email:

Regulation of the brain's neuroimmune system is central to development, normal function, and disease. Neuronal communication to microglia, the primary immune cells of the brain, is well known to involve purinergic signaling mediated via ATP secretion and the cytokine fractalkine. Recent evidence shows that neurons release multiple cytokines beyond fractalkine, yet these are less studied and poorly understood.

View Article and Find Full Text PDF

Clemastine fumarate accelerates accumulation of disability in progressive multiple sclerosis by enhancing pyroptosis.

medRxiv

April 2024

Neuroimmunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA.

Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system (CNS). Clemastine fumarate, the over-the-counter antihistamine and muscarinic receptor blocker, has remyelinating potential in MS. A clemastine arm was added to an ongoing platform clinical trial TRAP-MS (NCT03109288) to identify a cerebrospinal fluid (CSF) remyelination signature and to collect safety data on clemastine in patients progressing independently of relapse activity (PIRA).

View Article and Find Full Text PDF

Purinergic signaling plays a major role in aging and neurodegenerative diseases, which are associated with memory decline. Blackcurrant (BC), an anthocyanin-rich berry, is renowned for its antioxidant and neuroprotective activities. However, evidence on the effects of BC on purinergic signaling is lacking.

View Article and Find Full Text PDF

Clodronate: The Influence on ATP Purinergic Signaling.

Curr Rheumatol Rev

January 2025

University of Genoa, DISC Department, School of Medical and Pharmaceutical Sciences, Research Center of Osteoporosis and Osteoarticular Pathologies, Italy.

ATP is involved in numerous physiological functions, such as neurotransmission, modulation, and secretion, as well as in cell proliferation, differentiation, and death. While ATP serves an essential intracellular role as a source of energy, it behaves differently in the extracellular environment, where it acts as a signaling molecule capable of activating specific purinergic receptors (P2YRs and P2XRs) that modulate the response to ATP. Extracellular ATP signaling is a dynamic area of research, with particular interest in ATP's effects on inflammatory conditions and pain modulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!