DNA-displaying nanoparticles comprised of conjugates of single-stranded DNA (ssDNA) and elastin-like polypeptide (ELP) were developed. ssDNA was enzymatically conjugated to ELPs via a catalytic domain of Porcine Circovirus type 2 replication initiation protein (pRep) fused to ELPs. Nanoparticles were formed upon heating to temperatures above the phase transition temperature due to the hydrophobicity of ELPs and the hydrophilicity of conjugated ssDNA. We demonstrated the applicability of the resultant nanoparticles as drug carriers with tumor-targeting properties by conjugating a DNA aptamer, which is known to bind to Mucin 1 (MUC1), to ELPs. DNA aptamer-displaying nanoparticles encapsulating the anti-cancer drug paclitaxel were able to bind to cells overexpressing MUC1 and induce cell death.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ab8042 | DOI Listing |
Sci Rep
April 2024
Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India.
The present study predicts the molecular targets and druglike properties of the phyto-compound piperine (PIP) by in silico studies including molecular docking simulation, druglikeness prediction and ADME analysis for prospective therapeutic benefits against diabetic complications. PIP was encapsulated in biodegradable polymer poly-lactide-co-glycolide (PLGA) to form nanopiperine (NPIP) and their physico-chemical properties were characterized by AFM and DLS. ∼ 30 nm sized NPIP showed 86.
View Article and Find Full Text PDFACS Sens
January 2024
Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington ,District of Columbia20375, United States.
Almost all pathogens, whether viral or bacterial, utilize key proteolytic steps in their pathogenesis. The ability to detect a pathogen's genomic material along with its proteolytic activity represents one approach to identifying the pathogen and providing initial evidence of its viability. Here, we report on a prototype biosensor design assembled around a single semiconductor quantum dot (QD) scaffold that is capable of detecting both nucleic acid sequences and proteolytic activity by using orthogonal energy transfer (ET) processes.
View Article and Find Full Text PDFLangmuir
August 2021
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
The real motivation in the present work is to tune the synthesis variables that can result in a highly fluorescent and stable DNA copper nanocluster (CuNC) and also to understand the intricate mechanism behind this process. Here, carefully optimized concentrations of various reactants enabled the creation of a DNA-encapsulated CuNC for AT-DNA, displaying a size of <1.0 nm as confirmed by transmission electron microscopy and dynamic light scattering.
View Article and Find Full Text PDFNanotechnology
April 2020
Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan.
DNA-displaying nanoparticles comprised of conjugates of single-stranded DNA (ssDNA) and elastin-like polypeptide (ELP) were developed. ssDNA was enzymatically conjugated to ELPs via a catalytic domain of Porcine Circovirus type 2 replication initiation protein (pRep) fused to ELPs. Nanoparticles were formed upon heating to temperatures above the phase transition temperature due to the hydrophobicity of ELPs and the hydrophilicity of conjugated ssDNA.
View Article and Find Full Text PDFInt J Mol Sci
August 2014
Department of Pharmacy, Shandong Provincial Qian Foshan Hospital, Jinan 250014, China.
Combinations of chemotherapeutic drugs with nucleic acid has shown great promise in cancer therapy. In the present study, paclitaxel (PTX) and DNA were co-loaded in the hyaluronic acid (HA) and folate (FA)-modified liposomes (HA/FA/PPD), to obtain the dual targeting biomimetic nanovector. The prepared HA/FA/PPD exhibited nanosized structure and narrow size distributions (247.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!