Construction of DNA-displaying nanoparticles by enzymatic conjugation of DNA and elastin-like polypeptides using a replication initiation protein.

Nanotechnology

Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan.

Published: April 2020

DNA-displaying nanoparticles comprised of conjugates of single-stranded DNA (ssDNA) and elastin-like polypeptide (ELP) were developed. ssDNA was enzymatically conjugated to ELPs via a catalytic domain of Porcine Circovirus type 2 replication initiation protein (pRep) fused to ELPs. Nanoparticles were formed upon heating to temperatures above the phase transition temperature due to the hydrophobicity of ELPs and the hydrophilicity of conjugated ssDNA. We demonstrated the applicability of the resultant nanoparticles as drug carriers with tumor-targeting properties by conjugating a DNA aptamer, which is known to bind to Mucin 1 (MUC1), to ELPs. DNA aptamer-displaying nanoparticles encapsulating the anti-cancer drug paclitaxel were able to bind to cells overexpressing MUC1 and induce cell death.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ab8042DOI Listing

Publication Analysis

Top Keywords

dna-displaying nanoparticles
8
replication initiation
8
initiation protein
8
nanoparticles
5
construction dna-displaying
4
nanoparticles enzymatic
4
enzymatic conjugation
4
dna
4
conjugation dna
4
dna elastin-like
4

Similar Publications

The present study predicts the molecular targets and druglike properties of the phyto-compound piperine (PIP) by in silico studies including molecular docking simulation, druglikeness prediction and ADME analysis for prospective therapeutic benefits against diabetic complications. PIP was encapsulated in biodegradable polymer poly-lactide-co-glycolide (PLGA) to form nanopiperine (NPIP) and their physico-chemical properties were characterized by AFM and DLS. ∼ 30 nm sized NPIP showed 86.

View Article and Find Full Text PDF

Almost all pathogens, whether viral or bacterial, utilize key proteolytic steps in their pathogenesis. The ability to detect a pathogen's genomic material along with its proteolytic activity represents one approach to identifying the pathogen and providing initial evidence of its viability. Here, we report on a prototype biosensor design assembled around a single semiconductor quantum dot (QD) scaffold that is capable of detecting both nucleic acid sequences and proteolytic activity by using orthogonal energy transfer (ET) processes.

View Article and Find Full Text PDF

The real motivation in the present work is to tune the synthesis variables that can result in a highly fluorescent and stable DNA copper nanocluster (CuNC) and also to understand the intricate mechanism behind this process. Here, carefully optimized concentrations of various reactants enabled the creation of a DNA-encapsulated CuNC for AT-DNA, displaying a size of <1.0 nm as confirmed by transmission electron microscopy and dynamic light scattering.

View Article and Find Full Text PDF

Construction of DNA-displaying nanoparticles by enzymatic conjugation of DNA and elastin-like polypeptides using a replication initiation protein.

Nanotechnology

April 2020

Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan.

DNA-displaying nanoparticles comprised of conjugates of single-stranded DNA (ssDNA) and elastin-like polypeptide (ELP) were developed. ssDNA was enzymatically conjugated to ELPs via a catalytic domain of Porcine Circovirus type 2 replication initiation protein (pRep) fused to ELPs. Nanoparticles were formed upon heating to temperatures above the phase transition temperature due to the hydrophobicity of ELPs and the hydrophilicity of conjugated ssDNA.

View Article and Find Full Text PDF

Combinations of chemotherapeutic drugs with nucleic acid has shown great promise in cancer therapy. In the present study, paclitaxel (PTX) and DNA were co-loaded in the hyaluronic acid (HA) and folate (FA)-modified liposomes (HA/FA/PPD), to obtain the dual targeting biomimetic nanovector. The prepared HA/FA/PPD exhibited nanosized structure and narrow size distributions (247.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!