AI Article Synopsis

  • Alzheimer's disease shows significant variability in both clinical symptoms and brain structures at the individual level, making it hard to create reliable neuroimaging markers for tracking the disease.
  • The authors introduced 'atrophy network mapping' to analyze how brain atrophy in Alzheimer's patients relates to specific brain networks linked to their symptoms, with data from 330 patients compared to age-matched control subjects.
  • Despite individual differences in where atrophy occurred, all patients showed atrophy connected to specific brain areas, highlighting networks related to memory impairment and delusions, thus supporting this new mapping technique for understanding Alzheimer's.

Article Abstract

There is both clinical and neuroanatomical variability at the single-subject level in Alzheimer's disease, complicating our understanding of brain-behaviour relationships and making it challenging to develop neuroimaging biomarkers to track disease severity, progression, and response to treatment. Prior work has shown that both group-level atrophy in clinical dementia syndromes and complex neurological symptoms in patients with focal brain lesions localize to brain networks. Here, we use a new technique termed 'atrophy network mapping' to test the hypothesis that single-subject atrophy maps in patients with a clinical diagnosis of Alzheimer's disease will also localize to syndrome-specific and symptom-specific brain networks. First, we defined single-subject atrophy maps by comparing cortical thickness in each Alzheimer's disease patient versus a group of age-matched, cognitively normal subjects across two independent datasets (total Alzheimer's disease patients = 330). No more than 42% of Alzheimer's disease patients had atrophy at any given location across these datasets. Next, we determined the network of brain regions functionally connected to each Alzheimer's disease patient's location of atrophy using seed-based functional connectivity in a large (n = 1000) normative connectome. Despite the heterogeneity of atrophied regions at the single-subject level, we found that 100% of patients with a clinical diagnosis of Alzheimer's disease had atrophy functionally connected to the same brain regions in the mesial temporal lobe, precuneus cortex, and angular gyrus. Results were specific versus control subjects and replicated across two independent datasets. Finally, we used atrophy network mapping to define symptom-specific networks for impaired memory and delusions, finding that our results matched symptom networks derived from patients with focal brain lesions. Our study supports atrophy network mapping as a method to localize clinical, cognitive, and neuropsychiatric symptoms to brain networks, providing insight into brain-behaviour relationships in patients with dementia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7174048PMC
http://dx.doi.org/10.1093/brain/awaa058DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
32
brain networks
12
disease
9
clinical cognitive
8
cognitive neuropsychiatric
8
neuropsychiatric symptoms
8
alzheimer's
8
single-subject level
8
brain-behaviour relationships
8
atrophy
8

Similar Publications

Background And Objectives: Chronic kidney disease (CKD) is known to be associated with increased plasma phosphorylated tau217 (p-tau217) concentrations, potentially confounding the utility of plasma p-tau217 measurements as a marker of amyloid pathology in individuals with suspected Alzheimer disease (AD). In this study, we quantitatively investigate the relationship of plasma p-tau217 concentrations vs estimated glomerular filtration rate (eGFR) in individuals with CKD with and without amyloid pathology.

Methods: This was a retrospective examination of data from 2 observational cohorts from either the Mayo Clinic Study of Aging or the Alzheimer's Disease Research Center cohorts.

View Article and Find Full Text PDF

Enhancing protein O-GlcNAcylation by pharmacological inhibition of the enzyme O-GlcNAcase (OGA) has been considered as a strategy to decrease tau and amyloid-beta phosphorylation, aggregation, and pathology in Alzheimer's disease (AD). There is still more to be learned about the impact of enhancing global protein O-GlcNAcylation, which is important for understanding the potential of using OGA inhibition to treat neurodegenerative diseases. In this study, we investigated the acute effect of pharmacologically increasing O-GlcNAc levels, using the OGA inhibitor Thiamet G (TG), in normal mouse brains.

View Article and Find Full Text PDF

Introduction: To examine the longitudinal association between estimated pulse wave velocity (ePWV) and cognitive phenotypes in a rural Chinese older population.

Methods: This population-based study included 1857 dementia-free participants (age ≥60 years) who were examined in 2014 and followed in 2018. ePWV was calculated using age and mean blood pressure (MBP).

View Article and Find Full Text PDF

Long-range inputome of prefrontal GABAergic interneurons in the Alzheimer's disease mouse.

Alzheimers Dement

January 2025

Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, China.

Introduction: Alzheimer's disease (AD) is the most common neurodegenerative disease, characterized by damage to cortical circuits. However, the mechanisms underlying AD-associated changes in long-range circuits remain poorly understood.

Methods: In this study, we used viral tracing and fluorescence micro-optical sectioning tomography (fMOST) imaging to investigate whole-brain changes in the input circuit of the frontal cortex of 5×FAD mice.

View Article and Find Full Text PDF

Neurodegeneration: 2024 update.

Free Neuropathol

January 2024

Department of Pathology, Nash Family Department of Neuroscience, Department of Artificial Intelligence & Human Health, Neuropathology Brain Bank & Research CoRE, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

This review highlights a collection of both diverse and highly impactful studies published in the previous year selected by the author from the neurodegenerative neuropathology literature. As with previous reviews in this series, the focus is, to the best of my ability, to highlight human tissue-based experimentation most relevant to experimental and clinical neuropathologists. A concerted effort was made to balance the selected studies across neurodegenerative disease categories, approaches, and methodologies to capture the breadth of the research landscape.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!