Non-invasive evaluation of the equine gastrointestinal mucosal transcriptome.

PLoS One

Program in Integrative Nutrition & Complex Diseases, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, United States America.

Published: July 2020

Evaluating the health and function of the gastrointestinal tract can be challenging in all species, but is especially difficult in horses due to their size and length of the gastrointestinal (GI) tract. Isolation of mRNA of cells exfoliated from the GI mucosa into feces (i.e., the exfoliome) offers a novel means of non-invasively examining the gene expression profile of the GI mucosa. This approach has been utilized in people with colorectal cancer. Moreover, we have utilized this approach in a murine model of GI inflammation and demonstrated that the exfoliome reflects the tissue transcriptome. The ability of the equine exfoliome to provide non-invasive information regarding the health and function of the GI tract is not known. The objective of this study was to characterize the gene expression profile found in exfoliated intestinal epithelial cells from normal horses and compare the exfoliome data with the tissue mucosal transcriptome. Mucosal samples were collected from standardized locations along the GI tract (i.e. ileum, cecum, right dorsal colon, and rectum) from four healthy horses immediately following euthanasia. Voided feces were also collected. RNA isolation, library preparation, and RNA sequencing was performed on fecal and intestinal mucosal samples. Comparison of gene expression profiles from the tissue and exfoliome revealed correlation of gene expression. Moreover, the exfoliome contained reads representing the diverse array of cell types found in the GI mucosa suggesting the equine exfoliome serves as a non-invasive means of examining the global gene expression pattern of the equine GI tract.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7075554PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0229797PLOS

Publication Analysis

Top Keywords

gene expression
20
mucosal transcriptome
8
health function
8
gastrointestinal tract
8
expression profile
8
equine exfoliome
8
mucosal samples
8
exfoliome
7
tract
5
gene
5

Similar Publications

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.

View Article and Find Full Text PDF

This study aimed to identify shared gene expression related to circadian rhythm disruption in polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD) to discover common diagnostic biomarkers. Visceral fat RNA samples were collected from 12 PCOS and 14 non-PCOS patients, a sample size representing the clinical situation and sufficient to capture PCOS gene expression profiles. Along with liver transcriptome profiles from NAFLD patients, these data were analyzed to identify crosstalk circadian rhythm-related genes (CRRGs) between the diseases.

View Article and Find Full Text PDF

Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma.

Clin Exp Med

January 2025

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.

View Article and Find Full Text PDF

We have recently shown that fluoxetine (FX) suppressed polyinosinic-polycytidylic acid-induced inflammatory response and endothelin release in human epidermal keratinocytes, via the indirect inhibition of the phosphoinositide 3-kinase (PI3K)-pathway. Because PI3K-signaling is a positive regulator of the proliferation, in the current, highly focused follow-up study, we assessed the effects of FX (14 µM) on the proliferation and differentiation of human epidermal keratinocytes. We found that FX exerted anti-proliferative actions in 2D cultures (HaCaT and primary human epidermal keratinocytes [NHEKs]; 48- and 72-h; CyQUANT-assay) as well as in 3D reconstructed epidermal equivalents (48-h; Ki-67 immunohistochemistry).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!