Computational and robotic modeling reveal parsimonious combinations of interactions between individuals in schooling fish.

PLoS Comput Biol

Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Centre National de la Recherche Scientifique (CNRS), Université de Toulouse-Paul Sabatier (UPS), Toulouse, France.

Published: March 2020

Coordinated motion and collective decision-making in fish schools result from complex interactions by which individuals integrate information about the behavior of their neighbors. However, little is known about how individuals integrate this information to take decisions and control their motion. Here, we combine experiments with computational and robotic approaches to investigate the impact of different strategies for a fish to interact with its neighbors on collective swimming in groups of rummy-nose tetra (Hemigrammus rhodostomus). By means of a data-based agent model describing the interactions between pairs of H. rhodostomus (Calovi et al., 2018), we show that the simple addition of the pairwise interactions with two neighbors quantitatively reproduces the collective behavior observed in groups of five fish. Increasing the number of interacting neighbors does not significantly improve the simulation results. Remarkably, and even without confinement, we find that groups remain cohesive and polarized when each agent interacts with only one of its neighbors: the one that has the strongest contribution to the heading variation of the focal agent, dubbed as the "most influential neighbor". However, group cohesion is lost when each agent only interacts with its nearest neighbor. We then investigate by means of a robotic platform the collective motion in groups of five robots. Our platform combines the implementation of the fish behavioral model and a control system to deal with real-world physical constraints. A better agreement with experimental results for fish is obtained for groups of robots only interacting with their most influential neighbor, than for robots interacting with one or even two nearest neighbors. Finally, we discuss the biological and cognitive relevance of the notion of "most influential neighbors". Overall, our results suggest that fish have to acquire only a minimal amount of information about their environment to coordinate their movements when swimming in groups.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7098660PMC
http://dx.doi.org/10.1371/journal.pcbi.1007194DOI Listing

Publication Analysis

Top Keywords

computational robotic
8
interactions individuals
8
individuals integrate
8
swimming groups
8
agent interacts
8
"most influential
8
groups robots
8
robots interacting
8
fish
7
neighbors
6

Similar Publications

Robotics holds the potential to streamline the execution of repetitive and dangerous tasks, which are difficult or impossible for a human operator. However, in complex scenarios, such as nuclear waste management or disaster response, full automation often proves unfeasible due to the diverse and intricate nature of tasks, coupled with the unpredictable hazards, and is typically prevented by stringent regulatory frameworks. Consequently, the predominant approach to managing activities in such settings remains human teleoperation.

View Article and Find Full Text PDF

Dairy product requirement and the demand-supply gap of milk in Ethiopia have been increasing at an alarming rate due to various factors such as shortage of animal's feeds, feed staffs, feed costs, and poor genetic merits of the local breeds of the country. This problem can be lessened by selecting best breed and modern animal breeding facilities, which require technologies like big data analysis and machine learning. In this study, a prediction model that can predict age at first calving of weaned calves based on their pre-weaning and weaning parameters, including dam's parity number, season of calving, birth weight, pre-weaning health status, pre-weaning average daily weight gain (ADG), weaning age and weaning weight is developed.

View Article and Find Full Text PDF

To achieve high-performance trajectory tracking for a manipulator, this study proposes a novel sliding mode control strategy incorporating a nonlinear disturbance observer. The observer is designed to estimate unknown models in real-time, enabling feedforward compensation for various uncertainties such as modeling errors, joint friction, and external torque disturbances. The control law is formulated by integrating the Backstepping method, Lyapunov theory, and global fast terminal sliding mode theory, ensuring global convergence to zero within finite time and enhancing system robustness.

View Article and Find Full Text PDF

Exploring spiking neural networks for deep reinforcement learning in robotic tasks.

Sci Rep

December 2024

Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", Università di Bologna, 40126, Bologna, Italy.

Spiking Neural Networks (SNNs) stand as the third generation of Artificial Neural Networks (ANNs), mirroring the functionality of the mammalian brain more closely than their predecessors. Their computational units, spiking neurons, characterized by Ordinary Differential Equations (ODEs), allow for dynamic system representation, with spikes serving as the medium for asynchronous communication among neurons. Due to their inherent ability to capture input dynamics, SNNs hold great promise for deep networks in Reinforcement Learning (RL) tasks.

View Article and Find Full Text PDF

Surface electromyography (sEMG) signals reflect the local electrical activity of muscle fibers and the synergistic action of the overall muscle group, making them useful for gesture control of myoelectric manipulators. In recent years, deep learning methods have increasingly been applied to sEMG gesture recognition due to their powerful automatic feature extraction capabilities. sEMG signals contain rich local details and global patterns, but single-scale convolutional networks are limited in their ability to capture both comprehensively, which restricts model performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!