Purpose: Segmentation of magnetic resonance images (MRI) of the left ventricle (LV) plays a key role in quantifying the volumetric functions of the heart, such as the area, volume, and ejection fraction. Traditionally, LV segmentation is performed manually by experienced experts, which is both time-consuming and prone to subjective bias. This study aims to develop a novel capsule-based automated segmentation method to automatically segment the LV from images obtained by cardiac MRI.

Method: The technique applied for segmentation uses Fourier analysis and the circular Hough transform (CHT) to indicate the approximate location of the LV and a network capsule to precisely segment the LV. The neurons of the capsule network output a vector and preserve much of the information about the input by replacing the largest pooling layer with convolutional strides and dynamic routing. Finally, the segmentation result is postprocessed by threshold segmentation and morphological processing to increase the accuracy of LV segmentation.

Results: We fully exploit the capsule network to achieve the segmentation goal and combine LV detection and capsule concepts to complete LV segmentation. In the experiments, the tested methods achieved LV Dice scores of 0.922±0.05 end-diastolic (ED) and 0.898±0.11 end-systolic (ES) on the ACDC 2017 data set. The experimental results confirm that the algorithm can effectively perform LV segmentation from a cardiac magnetic resonance image. To verify the performance of the proposed method, visual and quantitative comparisons are also performed, which show that the proposed method exhibits improved segmentation accuracy compared with the traditional method.

Conclusions: The evaluation metrics of medical image segmentation indicate that the proposed method in combination with postprocessing and feature detection effectively improves segmentation accuracy for cardiac MRI. To the best of our knowledge, this study is the first to use a deep learning model based on capsule networks to systematically evaluate end-to-end LV segmentation.

Download full-text PDF

Source
http://dx.doi.org/10.3233/XST-190621DOI Listing

Publication Analysis

Top Keywords

segmentation
14
magnetic resonance
12
capsule network
12
proposed method
12
left ventricle
8
segmentation cardiac
8
cardiac magnetic
8
resonance images
8
segmentation accuracy
8
capsule
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!