Nanosized extracellular vesicles, known as exosomes, are produced by all cell types in mammalian organisms and have been recently involved in neurodegeneration. In the brain, both glia and neurons give rise to exosomes, which contribute to their intercellular communication. In addition, brain-derived exosomes have a remarkable property to cross the blood-brain-barrier bi-directionally. In this line, exosomes of central origin have been identified in peripheral circulation and already considered as putative blood biomarkers of neurodegenerative diseases, including Alzheimer's disease (AD). Moreover, tentative use of exosomes as vehicle for the clearance of brain-born toxic proteins or, conversely, neuroprotective drug delivery, was also envisaged. However, little is known about the precise role of exosomes in the control and regulation of neuronal functions. Based on the presence of subunits of glutamate receptors in neuron-derived exosomes on one hand, and complement proteins in astrocyte-derived exosomes on the other hand, we hypothesize that exosomes may participate in the control of neuronal excitability via inflammatory-like mechanisms both at the central level and from the periphery. In this review, we will focus on AD and discuss the mechanisms by which exosomes of neuronal, glial, and/or peripheral origin could impact on neuronal excitability either directly or indirectly.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/JAD-191237 | DOI Listing |
Br J Hosp Med (Lond)
January 2025
Department of Cardiology, The Second Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, Sichuan, China.
Hypertension (HT) is a prevalent medical condition showing an increasing incidence rate in various populations over recent years. Long-term hypertension increases the risk of the occurrence of hypertensive nephropathy (HTN), which is also a health-threatening disorder. Given that very little is known about the pathogenesis of HTN, this study was designed to identify disease biomarkers, which enable early diagnosis of the disease, through the utilization of high-throughput untargeted metabolomics strategies.
View Article and Find Full Text PDFPharmaceutics
January 2025
Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China.
Brain diseases pose significant treatment challenges due to the restrictive nature of the blood-brain barrier (BBB). Recent advances in targeting macromolecules offer promising avenues for overcoming these obstacles through receptor-mediated transcytosis (RMT). We summarize the current progress in targeting brain drug delivery with macromolecules for brain diseases.
View Article and Find Full Text PDFPharmaceutics
January 2025
Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences, 55 Nei Huan Xi Lu, College Town, Guangzhou 510006, China.
Psoriasis is a chronic, recurrent and inflammatory skin disease. Although conventional immunosuppressants can ameliorate psoriatic symptoms, it tends to relapse over time. Previous studies have shown that exosomes from both immune and non-immune cells participate in psoriatic immunopathology.
View Article and Find Full Text PDFJ Clin Med
January 2025
Translational Research Unit, Hospital Universitario Miguel Servet, IIS Aragón, 50009 Zaragoza, Spain.
Lung cancer is the primary cause of cancer-related deaths. Most patients are typically diagnosed at advanced stages. Low-dose computed tomography (LDCT) has been proven to reduce lung cancer mortality, but screening programs using LDCT are associated with a high number of false positives and unnecessary thoracotomies.
View Article and Find Full Text PDFLife (Basel)
January 2025
Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain.
Extracellular vesicles (EVs) are nanosized, membrane-bound structures that have emerged as promising tools for drug delivery, especially in the treatment of lysosomal storage disorders (LSDs) with central nervous system (CNS) involvement. This review highlights the unique properties of EVs, such as their biocompatibility, capacity to cross the blood-brain barrier (BBB), and potential for therapeutic cargo loading, including that of enzymes and genetic material. Current therapies for LSDs, like enzyme replacement therapy (ERT), often fail to address neurological symptoms due to their inability to cross the BBB.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!