Background: Our previous study has demonstrated that morphine post-conditioning (MpostC) protects cardiomyocytes from ischemia/reperfusion (I/R) injury partly through activating protein kinase-epsilon (PKCε) signaling pathway and subsequently inhibiting mitochondrial permeability transition pore (mPTP) opening.
Aim: In this study, we aim to investigate the relationship between long non-coding RNA TINCR and PKCε in cardiomyocytes under MpostC-treated I/R injury.
Design: The myocardial I/R rat model was established by the ligation of lower anterior descending coronary artery for 45 min followed by the reperfusion for 1 h, and MpostC was performed before the reperfusion.
Method: H/R and MpostC were performed in the rat cardiomyocyte cell line (H9C2), and the Cytochrome-c release in cytosol and mPTP opening were determined. Cell viability was detected by using Cell Counting Kit-8, and cell apoptosis was determined by using flow cytometry or TUNEL assay.
Results: The results indicated that MpostC restored the expression of TINCR in I/R rat myocardial tissues. In cardiomyocytes, the therapeutic effect of MpostC, including reduced mPTP opening, reduced Cytochrome-c expression, increased cell viability and reduced cell apoptosis, was dramatically negated by interfering TINCR. The expression of fibroblast growth factor 1 (FGF1), a protein that activates PKCε signaling pathway, was positively correlated with TINCR. The RNA immunoprecipitation and RNA pull-down assay further confirmed the binding between FGF1 and TINCR. Furthermore, TINCR was demonstrated to inhibit the degradation and ubiquitination of FGF1 in cardiomyocytes using the cycloheximide experiment and the ubiquitination assay. The TINCR/FGF1/PKCε axis was revealed to mediate the protective effect of MpostC against hypoxia/reoxygenation injury both in vitro and in vivo.
Conclusion: In conclusion, our findings demonstrated that MpostC-induced up-regulation of TINCR protects cardiomyocytes from I/R injury via inhibiting degradation and ubiquitination of FGF1, and subsequently activating PKCε signaling pathway, which provides a novel insight in the mechanism of TINCR and PKCε during MpostC treatment of I/R injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/qjmed/hcaa088 | DOI Listing |
Cardiovasc Toxicol
January 2025
The Second Department of Cardiovascular Medicine, Baoji People's Hospital, Baoji, China.
Dihydromyricetin (Dih), a naturally occurring flavonoid, has been identified to exert a protective effect against ischemia/reperfusion injury. However, the detailed mechanisms remain unclear. Here we investigated the biological role of Dih in preventing hypoxia/reoxygenation (H/R) injury in cardiomyocytes.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, 401336 Chongqing, China.
Background: Myocardial ischemia-reperfusion (I/R) injury and coronary microcirculation dysfunction (CMD) are observed in patients with myocardial infarction after vascular recanalization. The antianginal drug trimetazidine has been demonstrated to exert a protective effect in myocardial ischemia-reperfusion injury.
Objectives: This study aimed to investigate the role of trimetazidine in endothelial cell dysfunction caused by myocardial I/R injury and thus improve coronary microcirculation.
Antioxidants (Basel)
December 2024
Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan.
Hypoxia/reoxygenation (HR) often occurs under cardiac pathological conditions, and HR-induced oxidative stress usually leads to cardiomyocyte damage. Carvedilol, a non-selective β-blocker, is used clinically to treat cardiac ischemia diseases. Moreover, Carvedilol has also been reported to have an antioxidant ability by reducing lipid peroxidation.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
Diabetic cardiomyopathy causes end-stage heart failure, resulting in high morbidity and mortality in type 2 diabetes mellitus (T2DM) patients. Long-term treatment targeting metabolism is an emerging field in the treatment of diabetic cardiomyopathy. Semaglutide, an agonist of the glucagon-like peptide 1 receptor, is clinically approved for the treatment of T2DM and provides cardiac benefits in patients.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
Lactate produced during ischemia-reperfusion injury is known to promote lactylation of proteins, which play controversial roles. By analyzing the lactylomes and proteomes of mouse myocardium during ischemia-reperfusion injury using mass spectrometry, we show that both Serpina3k protein expression and its lactylation at lysine 351 are increased upon reperfusion. Both Serpina3k and its human homolog, SERPINA3, are abundantly expressed in cardiac fibroblasts, but not in cardiomyocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!