Background: Although there is a rise in the use of mobile health (mHealth) tools to support chronic disease management, evidence derived from theory-driven design is lacking.

Objective: The objective of this study was to determine the impact of an mHealth app that incorporated theory-driven trigger messages. These messages took different forms following the Fogg behavior model (FBM) and targeted self-efficacy, knowledge, and self-care. We assess the feasibility of our app in modifying these behaviors in a pilot study involving individuals with diabetes.

Methods: The pilot randomized unblinded study comprised two cohorts recruited as employees from within a health care system. In total, 20 patients with type 2 diabetes were recruited for the study and a within-subjects design was utilized. Each participant interacted with an app called capABILITY. capABILITY and its affiliated trigger (text) messages integrate components from social cognitive theory (SCT), FBM, and persuasive technology into the interactive health communications framework. In this within-subjects design, participants interacted with the capABILITY app and received (or did not receive) text messages in alternative blocks. The capABILITY app alone was the control condition along with trigger messages including spark and facilitator messages. A repeated-measures analysis of variance (ANOVA) was used to compare adherence with behavioral measures and engagement with the mobile app across conditions. A paired sample t test was utilized on each health outcome to determine changes related to capABILITY intervention, as well as participants' classified usage of capABILITY.

Results: Pre- and postintervention results indicated statistical significance on 3 of the 7 health survey measures (general diet: P=.03; exercise: P=.005; and blood glucose: P=.02). When only analyzing the high and midusers (n=14) of capABILITY, we found a statistically significant difference in both self-efficacy (P=.008) and exercise (P=.01). Although the ANOVA did not reveal any statistically significant differences across groups, there is a trend among spark conditions to respond more quickly (ie, shorter log-in lag) following the receipt of the message.

Conclusions: Our theory-driven mHealth app appears to be a feasible means of improving self-efficacy and health-related behaviors. Although our sample size is too small to draw conclusions about the differential impact of specific forms of trigger messages, our findings suggest that spark triggers may have the ability to cue engagement in mobile tools. This was demonstrated with the increased use of capABILITY at the beginning and conclusion of the study depending on spark timing. Our results suggest that theory-driven personalization of mobile tools is a viable form of intervention.

Trial Registration: ClinicalTrials.gov NCT04132089; http://clinicaltrials.gov/ct2/show/NCT004122089.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7105932PMC
http://dx.doi.org/10.2196/15927DOI Listing

Publication Analysis

Top Keywords

trigger messages
16
messages
8
mobile health
8
app
8
chronic disease
8
disease management
8
mhealth app
8
within-subjects design
8
text messages
8
capability app
8

Similar Publications

CircRNA CDR1AS promotes cardiac ischemia-reperfusion injury in mice by triggering cardiomyocyte autosis.

J Mol Med (Berl)

January 2025

Cardiovascular Surgery Department of The First Affiliated Hospital of Harbin Medical University, and Pharmacology Department of Pharmacy College of Harbin Medical University, Harbin, 150081, China.

Myocardial ischemia/reperfusion (IR) injury is a common adverse event in the clinical treatment of myocardial ischemic disease. Autosis is a form of cell death that occurs when autophagy is excessive in cells, and it has been associated with cardiac IR damage. This study aimed to investigate the regulatory mechanism of circRNA CDR1AS on autosis in cardiomyocytes under IR.

View Article and Find Full Text PDF

VSMC-specific TRPC1 deletion attenuates angiotensin II-induced hypertension and cardiovascular remodeling.

J Mol Med (Berl)

January 2025

Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 1800 Lihu Rd, Wuxi, 214122, China.

Article Synopsis
  • TRPC1 is a ion channel linked to cardiovascular issues, with increased expression observed in both treated vascular smooth muscle cells (VSMCs) and aortas of hypertensive mice.
  • Lack of TRPC1 in VSMCs significantly reduces AngII-induced effects like vasoconstriction, hypertension, and heart changes, indicating its crucial role in these processes.
  • The study identifies the EZH2-TRPC1-MEK/ERK pathway as a significant contributor to hypertension, suggesting that targeting TRPC1 or EZH2 could be effective in treating high blood pressure and related cardiovascular problems.
View Article and Find Full Text PDF

Background: Lichen striatus (LS) is a benign, mostly self-limiting dermatological condition, primarily affecting the skin, and sometimes the nails. It is characterised by the sudden onset of a band-like rash, typically following Blaschko lines. The exact cause of LS is not well established, but it is believed to be an abnormal immune response to the altered keratinocyte clone after a triggering event.

View Article and Find Full Text PDF

Background: Switching to biosimilars is an effective and safe practice in treating inflammatory diseases; however, a nocebo effect may arise as a result of the way in which the switch is communicated to a given patient.

Objective: We aimed to design a gaming-based digital educational tool (including a discussion algorithm) to support the training of health care professionals in efficiently communicating the switch to biosimilars, minimizing the generation of a nocebo effect and thus serving as an implementation strategy for the recommended switch.

Methods: The tool was developed based on interviews and focus group discussions with key stakeholders, both patients and health care professionals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!