A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Postsynthetic Modifications of DNA and RNA by Means of Copper-Free Cycloadditions as Bioorthogonal Reactions. | LitMetric

Bioorthogonal chemistry has mainly been developed for proteins and carbohydrates. The chemistry of nucleic acids is different, and bioorthogonal labeling strategies that were successfully applied for proteins and carbohydrates cannot be simply transferred to DNA and RNA. Cycloadditions play a central role for bioorthogonal chemistry with nucleic acids. postsynthetic labeling of DNA and RNA requires copper-free variants of cycloaddition chemistry to achieve "bio"orthogonality that can be applied even in living cells. Currently, there are three major types of copper-free cycloadditions available for nucleic acids: (i) the ring-strain-promoted azide-alkyne cycloadditions, (ii) the "photoclick" 1,3-dipolar cycloadditions, and (iii) the Diels-Alder reactions with inverse electron demand. In principle, bioorthogonally reactive building blocks for postsynthetic modifications of nucleic acids by cycloaddition can be prepared by three different ways: (i) The organic synthesis of DNA and RNA applies phosphoramidites as building blocks for solid-phase automated chemistry. (ii) The biochemical preparation of DNA and RNA by primer extension (PEX) and PCR applies triphosphates as building blocks together with DNA/RNA polymerases, and works in aqueous buffer. (iii) DNA and RNA is labeled by the intrinsic metabolism in cells using bioorthogonally reactive nucleosides. In contrast to proteins and carbohydrates, for which metabolic labeling strategies are well developed, there are only a few examples in the literature for metabolic labeling of nucleic acids. In this review, we summarize the currently available DNA and RNA building blocks, both phosphoramidites and nucleotide triphosphates, for copper-free and bioorthogonal postsynthetic modification strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.bioconjchem.0c00072DOI Listing

Publication Analysis

Top Keywords

dna rna
28
nucleic acids
20
building blocks
16
proteins carbohydrates
12
postsynthetic modifications
8
copper-free cycloadditions
8
bioorthogonal chemistry
8
chemistry nucleic
8
labeling strategies
8
bioorthogonally reactive
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!