Supramolecular Hydrogels Based on Nanoclay and Guanidine-Rich Chitosan: Injectable and Moldable Osteoinductive Carriers.

ACS Appl Mater Interfaces

Division of Advanced Prosthodontics, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, United States.

Published: April 2020

Supramolecular hydrogels have great potential as biomaterials for tissue engineering applications or vehicles for delivering therapeutic agents. Herein, a self-healing and pro-osteogenic hydrogel system is developed based on the self-assembly of laponite nanosheets and guanidinylated chitosan, where laponite works as a physical crosslinker with osteoinductive properties to form a network structure with a cationic guanidine group on chitosan chains. The hydrogels can be prepared with varying ratios of chitosan to laponite and display self-healing and injectable properties because of supramolecular forces as well as osteoinductive activity due to nanoclay. They enhance cell adhesion and promote osteogenic differentiation of mesenchymal stem cells by activating the Wnt/β-catenin signaling pathway. In addition, the hydrogel is used as a malleable carrier for the demineralized bone matrix (DBM). The loading of the DBM does not affect the self-healing and injectable natures of hydrogels while enhancing the osteogenic capacity, indicating that advanced allograft bone formulations with carriers can facilitate handling and bone healing. This work provides the first demonstration of therapeutic supramolecular design for the treatment of bone defects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7161535PMC
http://dx.doi.org/10.1021/acsami.0c01241DOI Listing

Publication Analysis

Top Keywords

supramolecular hydrogels
8
chitosan laponite
8
self-healing injectable
8
supramolecular
4
hydrogels based
4
based nanoclay
4
nanoclay guanidine-rich
4
chitosan
4
guanidine-rich chitosan
4
chitosan injectable
4

Similar Publications

Herbal micelles-loaded ROS-responsive hydrogel with immunomodulation and microenvironment reconstruction for diabetic wound healing.

Biomaterials

December 2024

State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China. Electronic address:

Persistent inflammation is a major cause of diabetic wounds that are difficult to heal. This is manifested in diabetic wounds with excessive reactive oxygen clusters (ROS), advanced glycation end products (AGE) and other inflammatory factors, and difficulty in polarizing macrophages toward inhibiting inflammation. Berberine is a natural plant molecule that inhibits inflammation; however, its low solubility limits its biological function through cytosis.

View Article and Find Full Text PDF

In this work, we investigate the pH-responsive behavior of multidomain peptide (MDP) hydrogels containing histidine. Small-angle X-ray scattering confirmed that MDP nanofibers sequester nonpolar residues into a hydrophobic core surrounded by a shell of hydrophilic residues. MDPs with histidine on the hydrophilic face formed nanofibers at all pH values tested, but the morphology of the fibers was influenced by the protonation state and the location of histidine in the MDP sequence.

View Article and Find Full Text PDF

Protein self-assembly allows for the formation of diverse supramolecular materials from relatively simple building blocks. In this study, a single-component self-assembling hydrogel is developed using the recombinant protein CsgA, and its successful application for spinal cord injury repair is demonstrated. Gelation is achieved by the physical entanglement of CsgA nanofibrils, resulting in a self-supporting hydrogel at low concentrations (≥5 mg mL).

View Article and Find Full Text PDF

Most synthetic hydrogels are formed through radical polymerization to yield a homogenous covalent meshwork. In contrast, natural hydrogels form through mechanisms involving both covalent assembly and supramolecular interactions. In this communication, we expand the capabilities of covalent poly(ethylene glycol) (PEG) networks through co-assembly of supramolecular peptide nanofibers.

View Article and Find Full Text PDF

A β-cyclodextrin-based supramolecular photonic crystal hydrogel biosensor with macroporous structures for naked-eye visual detection of cholesterol.

Carbohydr Polym

March 2025

College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China; Key Laboratory of Fundamental Chemistry of the State Ethnic Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China. Electronic address:

Cholesterol (CHO) is an essential lipid in cell membranes and a precursor for vital living substances. Abnormal CHO levels can cause cardiovascular diseases. Therefore, simple and accurate monitoring of CHO levels is crucial for early diagnosis and effective management of cardiovascular diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!