Hippo/YAP1 signaling is a major regulator of organ size, cancer stemness, and aggressive phenotype. Thus, targeting YAP1 may provide a novel therapeutic strategy for tumors with high YAP1 expression in esophageal cancer (EC). Chromatin immunoprecipitation (ChiP) and quantitative ChiP-PCR were used to determine the regulation of the chromatin remodeling protein bromodomain-containing protein 4 (BRD4) on YAP1. The role of the bromodomain and extraterminal motif (BET) inhibitor JQ1, an established BRD4 inhibitor, on inhibition of YAP1 in EC cells was dissected using western blot, immunofluorescence, qPCR, and transient transfection. The antitumor activities of BET inhibitor were further examined by variety of functional assays, cell proliferation (MTS), tumorsphere, and ALDH1+ labeling in vitro and in vivo. Here, we show that BRD4 regulates YAP1 expression and transcription. ChiP assays revealed that BRD4 directly occupies YAP1 promoter and that JQ1 robustly blocks BRD4 binding to the YAP1 promoter. Consequently, JQ1 strongly suppresses constitutive or induced YAP1 expression and transcription in EC cells and YAP1/Tead downstream transcriptional activity. Intriguingly, radiation-resistant cells that acquire strong cancer stem cell traits and an aggressive phenotype can be effectively suppressed by JQ1 as assessed by cell proliferation, tumorsphere formation, and reduction in the ALDH1+ cells. Moreover, effects of JQ1 are synergistically amplified by the addition of docetaxel in vitro and in vivo. Our results demonstrate that BRD4 is a critical regulator of Hippo/YAP1 signaling and that BRD4 inhibitor JQ1 represents a new class of inhibitor of Hippo/YAP1 signaling, primarily targeting YAP1 high and therapy-resistant cancer cells enriched with cancer stem cell properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7266288PMC
http://dx.doi.org/10.1002/1878-0261.12667DOI Listing

Publication Analysis

Top Keywords

hippo/yap1 signaling
12
yap1 expression
12
yap1
10
aggressive phenotype
8
targeting yap1
8
bet inhibitor
8
inhibitor jq1
8
brd4 inhibitor
8
cell proliferation
8
in vitro in vivo
8

Similar Publications

The Hippo pathway plays a tumorigenic role in highly angiogenic glioblastoma (GBM), whereas little is known about clinically relevant Hippo pathway inhibitors' ability to target adaptive mechanisms involved in GBM chemoresistance. Their molecular impact was investigated here in vitro against an alternative process to tumour angiogenesis termed vasculogenic mimicry (VM) in GBM-derived cell models. In silico analysis of the downstream Hippo signalling members YAP1, TAZ and TEAD1 transcript levels in low-grade glioblastoma (LGG) and GBM tumour tissues was performed using GEPIA.

View Article and Find Full Text PDF

KDELR1 regulates chondrosarcoma drug resistance and malignant behavior through Intergrin-Hippo-YAP1 axis.

Cell Death Dis

December 2024

Spinal Tumor Center, Department of Orthopaedic Oncology, No.905 Hospital of PLA Navy, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China.

Chondrosarcoma (CS) is the second most common primary bone malignancy, known for its unique transcriptional landscape that renders most CS subtypes resistant to chemotherapy, including neoadjuvant chemotherapy commonly used in osteosarcoma (OS) treatment. Understanding the transcriptional landscape of CS and the mechanisms by which key genes contribute to chemotherapy resistance could be a crucial step in overcoming this challenge. To address this, we developed a single-cell transcriptional map of CS, comparing it with OS and normal cancellous bone.

View Article and Find Full Text PDF

Centromere protein K (CENPK) is a newly identified malignancy-related gene that exhibits differential expression in various cancers and plays a crucial role in carcinogenesis. However, it remains uncertain whether CENPK is involved in clear cell renal cell carcinoma (ccRCC). This work aimed to unveil the expression, clinical significance, biological functions, and regulatory mechanisms of CENPK in ccRCC.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) primarily engage with mRNA, DNA, proteins, and microRNAs (miRNAs), thereby regulating gene expression; however, its specific role in diabetic erectile dysfunction (DED) has not been studied. This study aims to investigate the effects and mechanisms of in DED. The differential target gene was identified in the penile tissues of rats with DED through bioinformatics analyses.

View Article and Find Full Text PDF

The canonical Hippo-YAP1 signaling pathway is crucial for liver development and regeneration, but its role in repair and regeneration of intrahepatic bile duct in biliary atresia (BA) remains largely unknown. YAP1 expression in the liver tissues of patients with BA and Rhesus rotavirus-induced experimental BA mouse models were examined using quantitative reverse transcriptase-PCR and double immunofluorescence. Mouse EpCAM-expressing cell-derived liver organoids were generated and treated with Hippo-YAP1 pathway activators (Xmu-mp-1 and TRULI) or an inhibitor (Peptide17).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!