Background: Heart failure (HF) is an end-stage syndrome of all structural heart diseases which accompanies the loss of myocardium and cardiac fibrosis. Although the role of inflammasome in cardiac fibrosis has recently been a point of focus, the mechanism of inflammasome activation in HF has not yet been elucidated.
Methods: In this study, we investigated the expression of inflammasome proteins in a rat thoracic aorta constriction (TAC) model and cultured cardiac fibroblasts with stimulation of norepinephrine (NE).
Results: Our results showed that levels of inflammasome proteins in the myocardial of TAC rats were elevated. By blocking β-adrenergic signaling in the rats, inflammasome activation was suppressed and heart function was improved. The stimulation of cultured cardiac fibroblasts with NE activated inflammasome , which was abrogated by the inhibition of the calcium channels and reactive oxygen species (ROS). The activation of inflammasome by NE promoted cardiac fibrosis, whereas the inhibition of the calcium channels, ROS, and inflammasome reduced this effect.
Conclusions: The present study indicated that activation of inflammasome by β-adrenergic signaling promotes cardiac fibrosis. Therefore, modulation of inflammasome during HF might provide a novel strategy to treat this disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7048978 | PMC |
http://dx.doi.org/10.21037/atm.2020.02.31 | DOI Listing |
Alzheimers Dement
December 2024
Alzheimer's Center at Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
Background: FDA-approved carbonic anhydrase inhibitors (CAIs) have been shown to attenuate Aβ pathology, neurodegeneration, and cerebrovascular dysfunction in models of Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA), suggesting a key role for CAs as a novel and previously unexplored target for AD therapy. Amyloid β accumulation severely impairs the cerebral neuro-signaling pathway with a progressive loss in neurotrophic factors (NTFs, i.e.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
Background: Cardiovascular disease causes vascular dementia and contributes to most clinical dementia. This is embodied in the concept of vascular contributions to cognitive impairment and dementia (VCID). The potent endogenous peptide endothelin-1 (ET1) causes small artery vasoconstriction and fibrosis.
View Article and Find Full Text PDFInt Rev Immunol
January 2025
Department of Cardiology, Loudi Central Hospital, Loudi City, Hunan Province, China.
Objective: Heart failure (HF) causes structural and functional changes in the heart, with the pyroptosis-mediated inflammatory response as the core link in HF pathogenesis. E3 ubiquitin ligases participate in cardiovascular disease progression. Here, we explored the underlying molecular mechanisms of E3 ubiquitin ligase Smurf1 in governing HF.
View Article and Find Full Text PDFPhysiol Rep
January 2025
Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
Sympathoexcitation is a hallmark of heart failure, with sustained β-adrenergic receptor (βAR)-G protein signaling activation. βAR signaling is modulated by regulator of G protein signaling (RGS) proteins. Previously, we reported that Gα regulation by RGS2 or RGS5 is key to ventricular rhythm regulation, while the dual loss of both RGS proteins results in left ventricular (LV) dilatation and dysfunction.
View Article and Find Full Text PDFCardiovasc Pathol
December 2024
Chazov National Medical Research Center of Cardiology, 121552, Academician Chazov str., 15a, Moscow, Russian Federation.
Aim: to assess the relation of focal and diffuse left ventricular (LV) fibrosis to left bundle branch block (LBBB).
Materials And Methods: 60 patients with dilated cardiomyopathy and LBBB (DCM-LBBB), 50 DCM-nonLBBB patients, 15 patients with LBBB and structurally normal heart (idiopathic LBBB) and 10 healthy volunteers (HV) underwent cardiovascular magnetic resonance (CMR) with late gadolinium enhancement (LGE). LGE LV images were post-proceed for core scar (CS) and gray zone (GZ) calculation.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!