Hepatitis B virus (HBV) infection is a major cause of chronic liver disease and hepatocellular carcinoma. Current antiviral therapy does not effectively eradicate HBV and further investigations into the mechanisms of viral infection are needed to enable the development of new therapeutic agents. The sodium-taurocholate cotransporting polypeptide (NTCP) has been identified as a functional receptor for HBV entry in liver cells. However, the NTCP receptor is not sufficient for entry and other membrane proteins contribute to modulate HBV entry. This study seeks to understand how the NTCP functions in HBV entry. Herein we show that knockdown of the cell-cell adhesion molecule, E-cadherin significantly reduced infection by HBV particles and entry by HBV pseudoparticles in infected liver cells and cell lines. The glycosylated NTCP localizes to the plasma membrane through interaction with E- cadherin, which increases interaction with the preS1 portion of the Large HBV surface antigen. Our study contributes novel insights that advance knowledge of HBV infection at the level of host cell binding and viral entry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7056903 | PMC |
http://dx.doi.org/10.3389/fcimb.2020.00074 | DOI Listing |
PLoS Pathog
January 2025
Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China.
Sodium taurocholate co-transporting polypeptide (NTCP) has been identified as an entry receptor for hepatitis B virus (HBV), but the molecular events of the viral post-endocytosis steps remain obscure. In this study, we discovered that manganese (Mn) could strongly inhibit HBV infection in NTCP-reconstituted HepG2 cells without affecting viral replication. We therefore profiled the antiviral effects of Mn2+ in an attempt to elucidate the regulatory mechanisms involved in early HBV infection.
View Article and Find Full Text PDFFront Cell Infect Microbiol
December 2024
Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
In the context of chronic hepatitis B virus (HBV) infection, the continuous replication of HBV within host hepatocytes is a characteristic feature. Rather than directly causing hepatocyte destruction, this replication leads to immune dysfunction and establishes a state of T-B immune tolerance. Successful clearance of the HBV virus is dependent on the close collaboration between humoral and cellular immunity.
View Article and Find Full Text PDFBioorg Chem
December 2024
School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China. Electronic address:
The inhibition of HBV DNA and elimination of HBsAg has already been established as an indicator for HBV clinic cure, and a novel dual-targeting inhibitors of HBV polymerase/entry are designed and synthesized in this study. Pentacyclic triterpenes (PTs) scaffold of exhibiting a high affinity to NTCP, including glycyrrhitinic acid (GA), oleanolic acid (OA), ursolic acid (UA), and betulinic acid (BA) were linked neatly with the nucleoside drug zidovudine (AZT) through a molecular hybrid strategy to synthesize twenty of PTs-AZT conjugates for targeting HBV polymerase as well as sodium taurocholate cotransporting polypeptide (NTCP). The conjugates showed significant inhibitory effects on the secretion of HBsAg and HBeAg in HepG2.
View Article and Find Full Text PDFGut
December 2024
D-SOLVE consortium, an EU Horizon Europe funded project (No 101057917), Hannover, Germany.
Chronic hepatitis D (CHD) is the most severe form of viral hepatitis, carrying a greater risk of developing cirrhosis and its complications. For decades, pegylated interferon alpha (PegIFN-α) has represented the only therapeutic option, with limited virological response rates and poor tolerability. In 2020, the European Medicines Agency approved bulevirtide (BLV) at 2 mg/day, an entry inhibitor of hepatitis B virus (HBV)/hepatitis delta virus (HDV), which proved to be safe and effective as a monotherapy for up to 144 weeks in clinical trials and real-life studies, including patients with cirrhosis.
View Article and Find Full Text PDFProtein Sci
January 2025
Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
The Hepatitis B surface antigen (HBsAg) as the only lipid-associated envelope protein of the Hepatitis B virus (HBV) acts as cellular attachment and entry mediator of HBV making it the main target of neutralizing antibodies to provide HBV immunity after infection or vaccination. Despite its central role in inducing protective immunity, there is however a surprising lack of comparative studies examining different HBsAgs and their ability to detect anti-HBs antibodies. On the contrary, various time-consuming complex HBsAg production protocols have been established, which result in structurally and functionally insufficiently characterized HBsAg.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!