METTL3 Promotes the Progression of Gastric Cancer via Targeting the MYC Pathway.

Front Oncol

State Key Laboratory of Oncology in South China, Department of Medical Oncology of Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.

Published: February 2020

Methyltransferase-like 3 (METTL3), a major component of the N6-methyladenosine (m6A) methyltransferase complex, has been suggested to function as an oncogene in several cancers. However, its biological mechanism and the involved pathways in gastric cancer (GC) remain unknown. Here, we reported that frequent upregulation of METTL3 was responsible for the aberrant m6A levels in gastric carcinoma. On the other hand, a high level of METTL3 was significantly associated with several clinicopathological features and poor survival in patients with GC. The knockdown of METTL3 effectively inhibited cell proliferation and migration and invasion capacity. Moreover, overexpression of METTL3 considerably augmented its oncogenic function. Integrated RNA-seq and m6A-seq analysis first indicated that several component molecules (e.g., MCM5, MCM6, etc.) of MYC target genes were mediated by METTL3 via altered m6A modification. Our work uncovers the oncogenic roles of METTL3 in GC and suggests a critical mechanism of GC progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054453PMC
http://dx.doi.org/10.3389/fonc.2020.00115DOI Listing

Publication Analysis

Top Keywords

mettl3
8
gastric cancer
8
mettl3 promotes
4
promotes progression
4
progression gastric
4
cancer targeting
4
targeting myc
4
myc pathway
4
pathway methyltransferase-like
4
methyltransferase-like mettl3
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Case Western Reserve Universit, CLEVELAND, OH, USA.

Background: Mitochondrial dysfunction plays a critical role in the pathogenesis of Alzheimer's disease (AD). Mitochondrial proteostasis regulated by chaperones and proteases in each compartment of mitochondria is critical for mitochondrial function, and it is suspected that mitochondrial proteostasis deficits may be involved in mitochondrial dysfunction in AD.

Method: An unbiased screening of intraneuronal Aβ42 protein-interactome was perfumed in AD cell culture.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. However, the molecular mechanism underlying the occurrence and development of HCC remains unclear. We are interested in the function of m6A methylation enzyme WTAP in the occurrence and development of HCC.

View Article and Find Full Text PDF

The effect of immunotherapy for colorectal cancer (CRC) is limited due to anti-tumor immunosuppression. Circular RNAs (circRNAs) are also associated with tumor immunity. The aim of this study was to clarify the regulatory relationship between circRNA and anti-tumor immunosuppression in CRC.

View Article and Find Full Text PDF

Chemoresistance severely deteriorates the prognosis of advanced gastric cancer (GC) patients. Several studies demonstrated that (HP)-positive GC patients showed better outcomes after receiving chemotherapy than HP-negative ones. This study aims to confirm the role of HP in GC chemotherapy and to study the underlying mechanisms.

View Article and Find Full Text PDF

Long non-coding RNA LINC01214 is reported to be up-regulated in non-small cell lung cancer (NSCLC), however, its function in NSCLC has not been elucidated yet. In our study, we verified that LINC01214 was aberrantly higher in the tumor tissues and cell lines than that in the normal controls, and was relevant to the severity and prognosis of NSCLC through using real-time quantitative PCR. Then, 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide assay and flow cytometry illustrated that knocking down LINC01214 restrained cell proliferation and promoted apoptosis in A549 and H1299 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!