Shewanella oneidensis MR-1, a model species of exoelectrogenic bacteria (EEB), has been widely applied in bioelectrochemical systems. Biofilms of EEB grown on electrodes are essential in governing the current output and power density of bioelectrochemical systems. The MR-1 genome is exceptionally dynamic due to the existence of a large number of insertion sequence (IS) elements. However, to date, the impacts of IS elements on the biofilm-forming capacity of EEB and performance of bioelectrochemical systems remain unrevealed. Herein, we isolated a non-motile mutant (NMM) with biofilm-deficient phenotype from MR-1. We found that the insertion of an ISSod2 element into the flrA (encoding the master regulator for flagella synthesis and assembly) of MR-1 resulted in the non-motile and biofilm-deficient phenotypes in NMM cells. Notably, such a variant was readily confused with the wild-type strain because there were no obvious differences in growth rates and colonial morphologies between the two strains. However, the reduced biofilm formation on the electrodes and the deteriorated performances of bioelectrochemical systems and Cr(VI) immobilization for the strain NMM were observed. Given the wide distribution of IS elements in EEB, appropriate cultivation and preservation conditions should be adopted to reduce the likelihood that IS elements-mediated mutation occurs in EEB. These findings reveal the negative impacts of IS elements on the biofilm-forming capacity of EEB and performance of bioelectrochemical systems and suggest that great attention should be given to the actual physiological states of EEB before their applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2020.112136 | DOI Listing |
Environ Res
January 2025
Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, P.R. China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, P.R. China.
Antibiotics and antibiotic resistance genes (ARGs) are severe refractory pollutants in water. However, the effect of an intermittent electrical stimulation on the removal of antibiotics and ARGs from saline wastewater remains unclear. An anaerobic-aerobic-coupled upflow bioelectrochemical reactors (AO-UBERs) was used to treat tetracycline (TC) and quinolone (QN) in saline wastewater.
View Article and Find Full Text PDFWater Res
December 2024
MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China. Electronic address:
Lipids offer high energy recovery potential during anaerobic digestion (AD), but their hydrolysis generates long-chain fatty acids (LCFAs), which are difficult to biodegrade. The introduction of microbial electrolysis cells has been widely recognized as a promising strategy to enhance AD. However, it is still under debate whether the electrical circuit needs to be connected, as certain electrodes with large specific surface areas have been reported to enhance direct interspecies electron transfer (DIET) without requiring an external power supply.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy.
In the growing field of personalized medicine, non-invasive wearable devices and sensors are valuable diagnostic tools for the real-time monitoring of physiological and biokinetic signals. Among all the possible multiple (bio)-entities, pH is important in defining health-related biological information, since its variations or alterations can be considered the cause or the effect of disease and disfunction within a biological system. In this work, an innovative (bio)-electrochemical flexible pH sensor was proposed by realizing three electrodes (working, reference, and counter) directly on a polyimide (Kapton) sheet through the implementation of CO laser writing, which locally converts the polymeric sheet into a laser-induced graphene material (LIG electrodes), preserving inherent mechanical flexibility of Kapton.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA.
Multi-copper oxidases (MCOs) are enzymes of significant interest in biotechnology due to their efficient catalysis of oxygen reduction to water, making them valuable in sustainable energy production and bio-electrochemical applications. This study employs time-dependent density functional theory (TDDFT) to investigate the electronic structure and spectroscopic properties of the Type 1 (T1) copper site in Azurin, which serves as a model for similar sites in MCOs. Four model complexes of varying complexity were derived from the T1 site, including 3 three-coordinate models and 1 four-coordinate model with axial methionine ligation, to explore the impact of molecular branches and axial coordination.
View Article and Find Full Text PDFChemosphere
December 2024
College of Environment and Ecology, Chongqing University, Chongqing, PR China. Electronic address:
The sulfur redox cycling, mainly involving sulfide oxidation and sulfate reduction, remains a crucial factor that regulates the treatment performance of constructed wetlands (CWs). However, anoxic environments normally prevail in the CW systems, harboring vast reduced sulfur and sulfur minerals, where the occurrence and mechanism of anoxic sulfide oxidation remain unknown. In this study, CW microcosms filled with quartz sand (Qtz) and pyrite (Pyt) were established to investigate the anoxic sulfur oxidation under the bioelectrochemical manipulations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!