Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Because of its superior physical and chemical properties, MnFeO is regarded as one of the best magnetic material alternatives for FeO. However, MnFeO alone cannot remove heavy metal ions and dyes. Here, we report on a new mesoporous magnetic MnFeO@CS-SiO microsphere material that was synthesised via the hydrothermal method to remove Zn and methylene blue (MB) in simulated textile wastewater. The composite was characterised using a vibrating sample magnetometer, scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and a Brunauer-Emmett Teller analysis. The pH, adsorbent dosage, initial adsorbate concentration, and reaction time effects on the removal of Zn and MB were studied under different conditions, and a possible removal mechanism was proposed and discussed. The experimental results show that the suitable pH range for MB adsorption was extremely wide, and the adsorption equilibrium can be reached within 30 min. In addition, the prepared material has excellent stability. With an excellent removal efficiency as high as 56.1% and 93.86% for Zn and MB, respectively, after five consecutive cycles and a superior adsorption capacity compared with other materials, the prepared composite in this paper proved to be a promising and effective magnetic adsorbent for the removal of Zn and MB from textile wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2020.110377 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!