The hybrid use of Nedis-2m and Serpent 2.1.30 codes to predict the radiation characteristics (i.e., neutron yield and energy spectrum) of an Am-Be source with a fine-grained mixture of americium dioxide (AmO) and beryllium (Be) core was studied with a focus on the grain size influence on the simulation results. The study showed that the fine-grained structure of the source core would decrease the number of alpha particles participating in the nuclear reactions with O and Be nuclei, which softened the neutron energy spectrum and reduced the neutron yield. The simulations also confirmed that the source core made of the stable crystals of AmBe intermetallic alloy would improve the neutron yield to maximum 50% compared to the core made of AmO. Moreover, a source with a variable neutron yield was proposed with a heterogeneous core of AmO rods embedded in Be. The neutron energy spectrum of heterogeneous source resembled the energy spectrum of Deuterium-Tritium (D-T) neutrons which were generated in a long magnetic trap with high-temperature plasma. The subcritical irradiation facility assembled from the nth number of heterogeneous Am-Be source can be used to study the properties of materials and the equipment operating in the epithermal and fast neutron spectra. The use of a heterogeneous Am-Be assembly, as a basic element of an irradiation installation, simplifies the handling and operation procedures because it is easily disabled by removing the Be layer, or by inserting a sheet of the appropriate size and material between the Be and Am rod.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.apradiso.2020.109066 | DOI Listing |
Acta Crystallogr B Struct Sci Cryst Eng Mater
February 2025
Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 18200 Praha 8, Czechia.
The magnetic structures of the Ho-based i-MAX phase (MoHo)GaC were studied with neutron powder diffraction at low temperature. (MoHo)GaC crystallizes in the orthorhombic space group Cmcm. The material undergoes two successive antiferromagnetic transitions at T = 10 K and T = 7.
View Article and Find Full Text PDFAppl Radiat Isot
January 2025
Department of Physics, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran.
Safe storage of fresh and irradiated fuel is ensured by solving the problem of photon emission protection. The neutron component is usually not taken into account due to its low intensity. However, for the new VVER-1200 fuel, the neutron component consideration is a mandatory procedure for radiation safety.
View Article and Find Full Text PDFLangmuir
January 2025
School of Advanced Engineering, Kogakuin University, Tokyo 192-0015, Japan.
Arsenocholine-containing methacrylate (MTAsB) inspired by marine organisms was synthesized by the reaction of 2-bromoethyl methacrylate and trimethylarsine to investigate its polymerization behavior and the fundamental properties of the resulting polymer. Controlled radical polymerization of MTAsB proceeded in the presence of a copper catalyst and imidazolium chloride at 60 °C for 8 h to give a water-soluble polycation with a 94% yield. The smaller amount of nonfreezing water and intermediate water of poly(MTAsB) was observed compared with that of the ammonium-containing polycations.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States.
Molten salts are promising candidates in numerous clean energy applications, where knowledge of thermophysical properties and vapor pressure across their operating temperature ranges is critical for safe operations. Due to challenges in evaluating these properties using experimental methods, fast and scalable molecular simulations are essential to complement the experimental data. In this study, we developed machine learning interatomic potentials (MLIP) to study the AlCl molten salt across varied thermodynamic conditions ( = 473-613 K and = 2.
View Article and Find Full Text PDFDrug Dev Ind Pharm
January 2025
Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
Objective: Boron Neutron Capture Therapy (BNCT) is a novel precision radiotherapy. The key to BNCT application lies in the effective targeting and retention of the boron-10 (B) carrier. Among the various compounds studied in clinical settings, 4-boronophenylalanine (BPA) become the most prevalent one currently.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!