Prophylactic treatment is advised for metastatic bone disease patients with a high risk for fracture. Femoroplasty provides a minimally invasive procedure to stabilize the femur by injecting bone cement into the lesion. However, uncertainty remains whether it provides sufficient mechanical strength to the weight-bearing femur. The goal of this study was to quantify the improvement in bone stiffness, failure load and energy to failure due to cement augmentation of metastatic lesions at varying locations in the proximal femur. Eight pairs of human cadaveric femurs were mechanically tested until failure in a single-leg stance configuration. In each pair, an identical defect was milled in the left and right femur using a programmable milling machine to simulate an osteolytic lesion. The location of the defects varied amongst the eight pairs. One femur of each pair was augmented with polymethylmethacrylate, while the contralateral femur was left untreated. Digital image correlation was applied to measure strains on the bone surface during mechanical testing. Only femurs with a critical lesion showed an improvement in failure load and energy to failure due to augmentation. In these femurs, bone strength improved with 28% (±17%) on average and energy to failure with 58% (±41%), while stiffness did not show a significant improvement. The strain measurements from digital image correlation showed that cement augmentation reinforced the lesion, resulting in reduced strain magnitudes in the bone tissue adjacent to the lesion. The results indicate that femoroplasty may be an effective treatment to prevent fractures in several metastatic bone disease patients. However, the large scatter in the data clarifies the need for developing strategies to identify those patients who will benefit the most from the procedure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2020.103648 | DOI Listing |
Oper Orthop Traumatol
December 2024
Department for Orthopaedic and Trauma Surgery, Lucerne Cantonal Hospital LUKS, Spitalstrasse, Lucerne, Switzerland.
Objective: To maximize local tumor control, stabilize affected bones, and preserve or replace joints with minimal interventional burden, thereby enhancing quality of life for empowered living.
Indications: Suitable for patients with bone metastases, particularly those with severe pain and/or fractures and appropriate life expectancy.
Contraindications: In primary bone tumors, refer to the sarcoma surgery team for evaluation of wide resection.
JBJS Essent Surg Tech
December 2024
Department of Orthopaedic Surgery, Cleveland Clinic Foundation, Cleveland, Ohio.
Background: Unicompartmental knee arthroplasty (UKA) procedures have become much more common in the United States in recent years, with >40,000 UKAs performed annually. However, it is estimated that 10% to 40% of UKAs fail and thus require conversion to total knee arthroplasty (TKA). In the field of total joint arthroplasty, robotic-assisted surgeries have demonstrated advantages such as better accuracy and precision of implant positioning and improved restoration of a neutral mechanical axis.
View Article and Find Full Text PDFCureus
November 2024
Orthopaedics, Glasgow Royal Infirmary, Glasgow, GBR.
Osteoporosis is a major risk factor for fragility fractures. The British Orthopaedics Association Standards for Trauma and Orthopaedics (BOAST) and Getting it Right First Time (GIRFT) guidelines on fragility fracture management highlight the need to initiate prompt, coordinated multidisciplinary care with a focus on early mobilisation to improve patient outcomes. Medical management of fragility fractures focuses on the prevention of progressive frailty.
View Article and Find Full Text PDFBMC Musculoskelet Disord
December 2024
Experimental Orthopaedics, Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Innsbruck, 6020, Austria.
Background: Cementoplasty has been successfully used for treating fractures in various parts of the human body, although the use in weight-bearing long bones is a subject of controversial debate. Strategies to improve the mechanical properties of polymethylmethacrylate-based bone cement (BC) comprise changing the chemical composition or the application of metal reinforcement strategies. In clinical practice reinforced bone cement is used despite biomechanical basic research regarding this topic being scare.
View Article and Find Full Text PDFWater Res
December 2024
CSIRO Environment, Centre for Environment and Life Sciences, Private Bag No 5, Wembley, Western Australia 6913, Australia. Electronic address:
Harvesting of stormwater and injecting it into aquifers for storage and recovery during high water demand periods is a promising technology for augmenting conventional water reserves. However, little has been known on how stormwater impacts the biofouling of water distribution infrastructure. This study evaluated the effect on harvested and limestone aquifer treated stormwater on biofilm formation in a pilot distribution pipe network compared to an identical drinking water pipe rig.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!