Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
As a promising advanced computation technology, the integration of digital computation with neuromorphic computation into a single physical platform holds the advantage of a precise, deterministic, fast data process as well as the advantage of a flexible, paralleled, fault-tolerant data process. Even though two-terminal memristive devices have been respectively proved as leading electronic elements for digital computation and neuromorphic computation, it is difficult to steadily maintain both sudden-state-change and gradual-state-change in a single device due to the entirely different operating mechanisms. In this work, we developed a digital-analog compatible memristive device, namely, binary electronic synapse, through realizing controllable cation drift in a memristive layer. The devices feature nonvolatile binary memory as well as artificial neuromorphic plasticity with high operation endurance. With strong nonlinearity in switching dynamics, binary switching, neuromorphic plasticity, two-dimension information store, and trainable memory can be implemented by a single device.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c02145 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!