Aim: Insulin resistance is a metabolic state where insulin sensitivity is lower than normal condition and strongly related to type 2 diabetes. However, an in vitro model mimicking insulin resistance is rare and thus screening drugs for insulin resistance severely depends on an in vivo model. Here, to increase anti-diabetic drug selectivity for humans, 3D ADMSCs and macrophages were co-cultured with in-house fabricated co-culture plates.

Material And Methods: 3D co-culture plates were designed to load ADMSCs and RAW264.7 cells containing hydrogels in separate wells while allowing cell-cell interaction with co-culturing media. Hydrogels were constructed using a 3D cell-printing system containing 20 mg/ml alginate, 0.5 mg/ml gelatin and 0.5 mg/ml type I collagen. Cells containing hydrogels in 3D co-culture plates were incubated for 10 min to allow stabilization before the experiment. 3D co-culture plates were incubated with the CaCl2 solution for 5 min to complete the cross linking of alginate hydrogel. Cells in 3D co-culture plates were cultured for up to 12 days depending on the experiment and wells containing adipocytes and macrophages were separated and used for assays.

Results: KR-1, KR-2 and KR-3 compounds were applied during differentiation (12 days) in 3D co-cultured mouse 3T3-L1 adipocytes and 3D co-cultured human ADMSCs. Glucose uptake assay using 2-DG6P and 2-NBDG and western blot analysis were performed to investigate changes of insulin resistance in the 3D co-cultured model for interspecies selectivity of drug screening. KR-1 (mouse potent enantiomer) and KR-3 (racemic mixture) showed improvement of 2-DG and 2-NBDG uptake compared with KR-2 (human potent enantiomer) in 3D co-cultured 3T3-L1 adipocytes. In connection with insulin resistance in a 3D 3T3-L1 co-cultured model, KR-1 and KR-3 showed improvement of insulin sensitivity compared to KR-2 by markedly increasing GLUT4 expression. In contrast to the result of 3D co-cultured 3T3-L1 adipocytes, KR-1 failed to significantly improve 2-DG and 2-NBDG uptake in 3D co-cultured ADMSC adipocytes. Results of 2-NBDG accumulation and western blot analysis also showed that KR-2 and KR-3 improved insulin sensitivity relatively better than KR-1.

Conclusions: Our 3D co-culture model with/without 3D co-culture plates can successfully mimic insulin resistance while allowing investigation of the effects of anti-obesity or anti-diabetic drugs on human or mouse co-culturing cell type. This 3D co-culture system may accelerate screening of drugs for insulin resistance depending on species.

Download full-text PDF

Source
http://dx.doi.org/10.1111/dom.14033DOI Listing

Publication Analysis

Top Keywords

insulin resistance
28
co-culture plates
20
insulin sensitivity
12
3t3-l1 adipocytes
12
insulin
10
co-culture
9
co-culture model
8
model increase
8
drug selectivity
8
selectivity humans
8

Similar Publications

Background And Aims: This study evaluated the predictive value of the APF risk score in East Asian patients undergoing open nephrectomy and its correlation with hypertension and NAFLD.

Methods And Results: A retrospective study used the clinical data of 82 patients who underwent ON between January 2010 and December 2022. Per their APF score, patients were categorized into groups A (0-2 points) and B (3-4 points).

View Article and Find Full Text PDF

Epigenetic inheritance of PCOS by developmental programming and germline transmission.

Trends Endocrinol Metab

December 2024

Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden. Electronic address:

Polycystic ovary syndrome (PCOS) is a prevalent endocrine and metabolic disorder, affecting approximately 11-13% of women of reproductive age. Women with PCOS experience a higher prevalence of infertility, pregnancy complications, and cardiometabolic disorders such as obesity, insulin resistance, and type 2 diabetes mellitus. Furthermore, psychiatric comorbidities, including depression and anxiety, significantly impact the quality of life in this population.

View Article and Find Full Text PDF

Metabolic factors modulate effort-based decision-making in major depressive disorder.

J Affect Disord

December 2024

Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada. Electronic address:

Background: Abnormalities in effort-based decision-making have been consistently reported in major depressive disorder (MDD). Evidence indicates that metabolic factors, such as insulin resistance and dyslipidemia, which are highly prevalent in MDD, are independently associated with reward disturbances. Herein, we investigate the moderating effect of metabolic factors on effort-based decision-making in individuals with MDD.

View Article and Find Full Text PDF

Metabolome and transcriptome profiling reveal tRNA-derived small RNAs regulated glutathione metabolism in intrauterine growth-restricted pigs liver.

Int J Biol Macromol

December 2024

State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China. Electronic address:

Intrauterine growth retardation (IUGR) has become a difficult problem in animal husbandry and is often accompanied by the occurrence of metabolic syndrome. tRNA-derived small RNAs (tsRNAs) are a novel class of regulatory small noncoding RNAs. However, the involvement of tsRNA in regulating the mechanism of IUGR remains unclear.

View Article and Find Full Text PDF

Lipid rafts are subdomains of the cell membrane that are rich in cholesterol and glycolipids, and they are involved in various cellular processes and pathophysiological mechanisms. However, the specific role of lipid rafts in hepatocyte dysfunction during the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) is not fully understood. In this study, we investigated the impact of lipid rafts on insulin sensitivity and hepatocyte injury induced by saturated free fatty acids (sFFAs) using primary-cultured mouse hepatocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!