The hematopoietic system is sensitive to radiation. In this research, new aryl sulfone derivatives (XH-201 and XH-202) containing a nitrogen heterocycle were designed and synthesized and their radio-protective efficacies with regard to the hematopoietic system were evaluated. XH-201 administration significantly increased the survival rate of mice after 8.0 Gy total body irradiation (TBI). The results showed that XH-201 treatment not only increased the white blood cells, platelets counts and the percentage of hematopoietic progenitor cells and hematopoietic stem cells in mice exposed to 4.0 Gy TBI but also decreased DNA damage, as determined by flow cytometric analysis of histone H2AX phosphorylation. In addition, our data demonstrated that XH-201 decreased the mitochondrial reactive oxygen species (ROS) levels in hematopoietic cells. Overall, these data suggest that XH-201 is beneficial for the protection of the hemoatopoietic system against radiation-induced injuries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7299261 | PMC |
http://dx.doi.org/10.1093/jrr/rraa009 | DOI Listing |
Org Lett
January 2025
College of Chemistry and Chemical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China.
A solvent-controlled unprecedented tandem reaction of readily accessible SeO, a wide variety of sulfonyl hydrazides, and alkynes has been established for the chemodivergent construction of structurally complex 1,2-bis(()-1-aryl-2-arylsulfonylvinyl)diselanes and bis(()-1-aryl-2-(arylsulfonyl)vinyl)selanes via a catalyst-free one-pot three-component approach, respectively. The adjustable and controlled synthetic strategy shows good yields and chemoselectivities for most substrates under mild and simple conditions.
View Article and Find Full Text PDFJ Org Chem
December 2024
Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, Tamilnadu, India.
Sodium salt of aryl sulfinic acid reacts with enynone in a different manner, yielding α-furyl sulfone and stereodefined vinyl sulfone in toluene and EtOH respectively in the presence of ZnCl. The salient features of this protocol include chemoselectivity, broad substrate scope, high efficiency, high yield, and easy purification. The synthetic utilities of the products are demonstrated by cycloaddition and cis-trans photoisomerization reactions.
View Article and Find Full Text PDFJ Org Chem
December 2024
School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
A gold-catalyzed sulfonylation of aryl/vinyl iodides to synthesize aryl sulfones facilitated by the ligand-enabled Au(I)/Au(III) redox catalysis was developed. In the reaction, aryl sodium sulfinates or sulphinic acids can react smoothly with aryl/vinyl iodides to directly construct various aryl sulfones. The strong synthetic capabilities of sulfone synthesis are demonstrated by its easily available and handled reagents, good functional group compatibility, and late-stage application of complicated biomolecules.
View Article and Find Full Text PDFJ Org Chem
December 2024
Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India.
Herein, we describe a Zn-catalyzed atom-economical, inexpensive, and sustainable method for preparing a broad spectrum of substituted olefins utilizing alcohols as the main precursor. Using a Zn(II) complex [ZnLCl] () of the redox-noninnocent ligand 2-((4-chlorophenyl)diazenyl)-1,10-phenanthroline (), various ()-olefins were prepared in good yields by coupling alcohols with sulfones and aryl cyanides under an inert atmosphere. Under an aerial atmosphere, vinyl nitriles were isolated in up to 82% yield reacting alcohols with benzyl cyanides in the presence of .
View Article and Find Full Text PDFChem Asian J
December 2024
Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, 333031, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!