Background: The classification of benign versus malignant breast lesions on multi-sequence Magnetic Resonance Imaging (MRI) is a challenging task since breast lesions are heterogeneous and complex. Recently, deep learning methods have been used for breast lesion diagnosis with raw image input. However, without the guidance of domain knowledge, these data-driven methods cannot ensure that the features extracted from images are comprehensive for breast cancer diagnosis. Specifically, these features are difficult to relate to clinically relevant phenomena.
Purpose: Inspired by the cognition process of radiologists, we propose a Knowledge-driven Feature Learning and Integration (KFLI) framework, to discriminate between benign and malignant breast lesions using Multi-sequences MRI.
Methods: Starting from sequence division based on characteristics, we use domain knowledge to guide the feature learning process so that the feature vectors of sub-sequence are constrained to lie in characteristic-related semantic space. Then, different deep networks are designed to extract various sub-sequence features. Furthermore, a weighting module is employed for the integration of the features extracted from different sub-sequence images adaptively.
Results: The KFLI is a domain knowledge and deep network ensemble, which can extract sufficient and effective features from each sub-sequence for a comprehensive diagnosis of breast cancer. Experiments on 100 MRI studies have demonstrated that the KFLI achieves sensitivity, specificity, and accuracy of 84.6%, 85.7% and 85.0%, respectively, which outperforms other state-of-the-art algorithms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mri.2020.03.001 | DOI Listing |
ACS Sens
January 2025
Department of Engineering Physics, McMaster University, 1280 Main Street West, L8S 4L8 Hamilton, Ontario, Canada.
Current approaches for classifying biosensor data in diagnostics rely on fixed decision thresholds based on receiver operating characteristic (ROC) curves, which can be limited in accuracy for complex and variable signals. To address these limitations, we developed a framework that facilitates the application of machine learning (ML) to diagnostic data for the binary classification of clinical samples, when using real-time electrochemical measurements. The framework was applied to a real-time multimeric aptamer assay (RT-MAp) that captures single-frequency (12.
View Article and Find Full Text PDFPhys Eng Sci Med
January 2025
Amrita School of Artificial Intelligence, Amrita Vishwa Vidyapeetham, Bangalore, India.
Parkinson Disease (PD) is a complex neurological disorder attributed by loss of neurons generating dopamine in the SN per compacta. Electroencephalogram (EEG) plays an important role in diagnosing PD as it offers a non-invasive continuous assessment of the disease progression and reflects these complex patterns. This study focuses on the non-linear analysis of resting state EEG signals in PD, with a gender-specific, brain region-specific, and EEG band-specific approach, utilizing recurrence plots (RPs) and machine learning (ML) algorithms for classification.
View Article and Find Full Text PDFHum Genet
January 2025
TCS Research, Tata Consultancy Services, Hyderabad, India.
Variants of uncertain significance (VUS) represent variants that lack sufficient evidence to be confidently associated with a disease, thus posing a challenge in the interpretation of genetic testing results. Here we report an improved method for predicting the VUS of Arylsulfatase A (ARSA) gene as part of the Critical Assessment of Genome Interpretation challenge (CAGI6). Our method uses a transfer learning approach that leverages a pre-trained protein language model to predict the impact of mutations on the activity of the ARSA enzyme, whose deficiency is known to cause a rare genetic disorder, metachromatic leukodystrophy.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea.
Purpose: Descemet membrane endothelial keratoplasty (DMEK) has emerged as a novel approach in corneal transplantation over the past two decades. This study aims to identify predisposing risk factors for post-DMEK ocular hypertension (OHT) and develop a preoperative predictive model for post-DMEK OHT.
Methods: Patients who underwent DMEK at Gangnam Severance Hospital between 2017 and 2024 were included in the study.
J Mater Chem B
January 2025
Biomaterials Drug Delivery and Nanotechnology Unit, Centre for Biomedical and Biomaterials Research (CBBR), University of Mauritius, Réduit, Mauritius.
Tissue regeneration after a wound occurs through three main overlapping and interrelated stages namely inflammatory, proliferative, and remodelling phases, respectively. The inflammatory phase is key for successful tissue reconstruction and triggers the proliferative phase. The macrophages in the non-healing wounds remain in the inflammatory loop, but their phenotypes can be changed interactions with nanofibre-based scaffolds mimicking the organisation of the native structural support of healthy tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!