There is an emerging understanding that an individual's risk for future rheumatoid arthritis (RA) can be determined using a combination of factors while they are still in a state where clinically-apparent inflammatory arthritis (IA) is not yet present. Indeed, this concept has underpinned several completed and ongoing prevention trials in RA. Importantly, risk factors can be divided into modifiable (e.g. smoking, exercise, dental care and diet) and non-modifiable factors (e.g. genetics, sex, age). In addition, there are now several biomarkers including autoantibodies, inflammatory markers and imaging techniques that are highly predictive of future clinically-apparent IA/RA. Although none of the prevention studies have yet provided major breakthroughs, several of them have provided valuable insights that can help to improve the design of future clinical trials and enable RA prevention. In aggregate, these findings suggest that the most accurate disease prediction models will require the combination of demographic and clinical information, biomarkers and potentially medical imaging data to identify individuals for intervention. This review summarizes some of the key aspects around precision medicine in RA with special focus on disease prediction and prevention.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.autrev.2020.102506DOI Listing

Publication Analysis

Top Keywords

precision medicine
8
rheumatoid arthritis
8
prediction prevention
8
future clinically-apparent
8
disease prediction
8
prevention
5
medicine care
4
care rheumatoid
4
arthritis focus
4
focus prediction
4

Similar Publications

Tumor necrosis factor receptor-associated factor 1 (TRAF1) is a crucial signaling adaptor involved in multiple cellular events. However, its role in regulating osteoclastogenesis and energy metabolism remains unclear. Here, we report that TRAF1 promotes osteoclastogenesis and oxidative phosphorylation (OXPHOS).

View Article and Find Full Text PDF

Correlations between spinopelvic parameters and health-related quality of life in degenerative lumbar scoliosis patients before and after long -level fusion surgery.

BMC Musculoskelet Disord

January 2025

Department of Orthopedics, Peking University Third Hospital, No. 49. North Garden Street, Hai Dian District, Beijing, 100191, People's Republic of China.

Background: For degenerative lumbar scoliosis (DLS), prior studies mainly focused on the preoperative relationship between spinopelvic parameters and health-related quality of life (HRQoL), lacking an exhaustive evaluation of the postoperative situation. Therefore, the postoperative parameters most closely bonded with clinical outcomes has not yet been well-defined in DLS patients. The objective of this study was to comprehensively assess the correlation between radiographic parameters and HRQoL before and after surgery, and to identified the most valuable spinopelvic parameters for postoperative curative effect.

View Article and Find Full Text PDF

Exploring the potential of advanced artificial intelligence technology in predicting microsatellite instability (MSI) and Ki-67 expression of endometrial cancer (EC) is highly significant. This study aimed to develop a novel hybrid radiomics approach integrating multiparametric magnetic resonance imaging (MRI), deep learning, and multichannel image analysis for predicting MSI and Ki-67 status. A retrospective study included 156 EC patients who were subsequently categorized into MSI and Ki-67 groups.

View Article and Find Full Text PDF

Breast cancer is one of the most aggressive types of cancer, and its early diagnosis is crucial for reducing mortality rates and ensuring timely treatment. Computer-aided diagnosis systems provide automated mammography image processing, interpretation, and grading. However, since the currently existing methods suffer from such issues as overfitting, lack of adaptability, and dependence on massive annotated datasets, the present work introduces a hybrid approach to enhance breast cancer classification accuracy.

View Article and Find Full Text PDF

Gut microbiota disruptions after allogeneic hematopoietic cell transplantation (alloHCT) are associated with increased risk of acute graft-versus-host disease (aGVHD). We designed a randomized, double-blind placebo-controlled trial to test whether healthy-donor fecal microbiota transplantation (FMT) early after alloHCT reduces the incidence of severe aGVHD. Here, we report the results from the single-arm run-in phase which identified the best of 3 stool donors for the randomized phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!