Aims: SGLT2 inhibitors have been proposed as an adjunct to insulin therapy for glycemic control in type 1 diabetes (T1D) patients. However, concern has been raised due to an increase in renin-angiotensin-system (RAS) activity reported in a clinical trial in which an SGLT2 inhibitor was added while insulin dose was reduced in T1D patients. We previously reported that insulin inhibits intrarenal angiotensinogen (Agt) gene transcription and RAS activation. We hypothesized that insulin, rather than SGLT2 inhibition might regulate the intrarenal RAS.

Methods: We compared RAS activity in non-diabetic wild type mice, Akita mice (T1D model) and Akita mice treated with insulin or the SGLT2 inhibitor canagliflozin.

Results: Treatment of Akita mice with insulin or canagliflozin produced similar reductions in blood glucose, whereas insulin, but not canagliflozin, reduced elevated systolic blood pressure. Akita mice exhibited increased renal Agt mRNA/protein expression, which was attenuated by insulin, but not by canagliflozin. Furthermore, insulin was more effective than canagliflozin in lowering kidney weight and albuminuria.

Conclusions: Insulin, but not canagliflozin, lowers intrarenal RAS activity in Akita mice. Our findings can be of potential clinical importance, especially for T1D patients who are not on RAS inhibitors at the time of adding SGLT2 inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.diabres.2020.108107DOI Listing

Publication Analysis

Top Keywords

akita mice
20
insulin canagliflozin
16
insulin sglt2
12
sglt2 inhibitor
12
t1d patients
12
ras activity
12
insulin
11
type diabetes
8
sglt2 inhibitors
8
mice
7

Similar Publications

Renal hedgehog interacting protein (Hhip) activates sodium-glucose cotransporter 2 (Sglt2) expression and promotes tubular senescence in murine diabetic kidney disease (DKD), yet its underlying mechanism(s) are poorly understood. Here we study the effect of the SGLT2 inhibitor, canagliflozin on tubulopathy (fibrosis and apoptosis) in Akita/Hhip-transgenic (Tg) mice with overexpression of Hhip in their renal proximal tubular cells (RPTCs) and its relevant mechanisms. The DKD-tubulopathy with pronounced Sglt2 expression was aggravated in the kidney of Akita/Hhip-Tg cf.

View Article and Find Full Text PDF

Renal Tubule-Specific Angiotensinogen Deletion Attenuates SGLT2 Expression and Ameliorates Diabetic Kidney Disease in Murine Models of Type 1 Diabetes.

Diabetes

January 2025

Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC Canada H2X 0A9.

The role of the intrarenal renin-angiotensin system (iRAS) in diabetic kidney disease (DKD) progression remains unclear. In this study, we generated mice with renal tubule-specific deletion of angiotensinogen (Agt; RT-Agt-/-) in both Akita and streptozotocin (STZ)-induced mouse model of diabetes. Both Akita RT-Agt-/- and STZ-RT-Agt-/- mice exhibited significant attenuation of glomerular hyperfiltration, urinary albumin/creatinine ratio, glomerulomegaly and tubular injury.

View Article and Find Full Text PDF

Aims/introduction: Fatty acid-binding protein (FABP) 4, which acts as an adipokine secreted by adipocytes, macrophages, and capillary endothelial cells, is expressed in injured glomerular cells. It has been reported that urinary (U-) FABP4 is associated with renal dysfunction and proteinuria in several glomerular kidney diseases. However, the clinical significance of U-FABP4 in diabetic kidney disease (DKD) remains undetermined.

View Article and Find Full Text PDF

Low-inflammatory lipid nanoparticle-based mRNA vaccine elicits protective immunity against H5N1 influenza virus with reduced adverse reactions.

Mol Ther

December 2024

Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan. Electronic address:

Messenger RNA vaccines based on lipid nanoparticles (mRNA-LNPs) are promising vaccine modalities. However, mRNA-LNP vaccines frequently cause adverse reactions such as swelling and fever in humans, partly due to the inflammatory nature of LNP. Modification of the ionizable lipids used in LNPs is one approach to avoid these adverse reactions.

View Article and Find Full Text PDF

A complication of type 1 diabetes mellitus (T1DM) is diabetic myopathy that includes reduced regenerative capacity of skeletal muscle. Sphingolipids are a diverse family of lipids with roles in skeletal muscle regeneration. Some studies have found changes in sphingolipid species levels in T1DM, however, the effect of T1DM on a sphingolipid panel in regenerating skeletal muscle has not been examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!