Bepotastine (BPT) is a H-receptor antagonist. It is used as a besilate salt in ophthalmic solution for allergic conjunctivitis and orally for the treatment of allergic rhinitis and urticaria/pruritus. Its systematic forced degradation study is unreported. The same was carried out in different conditions prescribed by International Conference on Harmonisation. The stressed solutions were subjected to reversed phase liquid chromatographic analysis, and BPT was observed to be labile under photobasic condition only, yielding 5 photodegradation products. The structures of the latter were elucidated from data generated by liquid chromatography-high-resolution mass spectrometry and multistage mass spectrometry. Of the 5, 4 products were further isolated and subjected to nuclear magnetic resonance spectroscopy to justify the proposed structures. Two of them, with similar accurate mass, were additionally and unambiguously characterized from their heteronuclear multiple bond correlation data, hydrogen deuterium exchange mass data, and quantum chemical analysis using density functional theory calculations. One degradation product had a structure that could only be explained by unusual rearrangement involving conversions of N-oxide into hydroxylamine, similar to Meisenheimer rearrangement. The physicochemical, as well as absorption, distribution, metabolism, excretion, and toxicity properties of BPT and its characterized photodegradation products were evaluated in silico by ADMET Predictor™ software.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2020.03.004DOI Listing

Publication Analysis

Top Keywords

photodegradation products
12
absorption distribution
8
distribution metabolism
8
metabolism excretion
8
excretion toxicity
8
toxicity properties
8
mass spectrometry
8
characterization photodegradation
4
products
4
products bepotastine
4

Similar Publications

To meet wastewater treatment quality standards for reuse, integrating advanced oxidation processes (AOPs) with Decentralized Wastewater Treatment Systems (DEWATS) is promising. This study aimed to optimize AOPs (ozonolysis, UV photolysis, TiO photocatalysis) for polishing anaerobic filter (AF) effluent from DEWATS, as an alternative to constructed wetlands. Metrics included pathogen reduction efficiency, post-disinfection regrowth, and effects on physical parameters (pH, EC, turbidity), organic matter (soluble COD, BOD, DOC, humic), and nutrient concentration (ammonium, nitrates, ortho-P).

View Article and Find Full Text PDF

A Simple One-Pot Method for the Synthesis of BiFeO/BiFeO Heterojunction for High-Performance Photocatalytic Degradation Applications.

Int J Mol Sci

December 2024

Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.

This study presents a facile one-pot synthesis method to fabricate BiFeO-BiFeO-BiO heterojunction photocatalysts with controllable compositions and pure phases. Three different binary heterojunctions (BiFeO/BiFeO, BiFeO/BiO, and BiFeO/BiO) and a ternary BiFeO/BiFeO/BiO heterojunction were formed, all exhibiting significantly enhanced photocatalytic performance for the degradation of methylene blue (MB) and phenol under visible light irradiation, outperforming the individual compositions. Notably, the BiFeO/BiFeO heterojunction achieved the highest degradation efficiency (93.

View Article and Find Full Text PDF

Kinetic Aspects of Ethylene Glycol Degradation Using UV-C Activated Hydrogen Peroxide (HO/UV-C).

Molecules

December 2024

Research and Educational Center "Institute of Chemical Technologies", Novosibirsk State University, Pirogova St. 2, Novosibirsk 630090, Russia.

Ethylene glycol (EG) is a contaminant in the wastewater of airports because it is commonly used in aircraft deicing fluids during the cold season in northern regions. Ethylene glycol by itself has relatively low toxicity to mammals and aquatic organisms, but it can lead to a substantial increase in chemical and biological oxygen demands. The contamination of water with EG facilitates the rapid growth of microbial biofilms, which decreases the concentration of dissolved oxygen in water and negatively affects overall biodiversity.

View Article and Find Full Text PDF

UV and Visible Light-Induced Photocatalytic Efficiency of Polyaniline/Titanium Dioxide Heterostructures.

Molecules

December 2024

Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.

The concept of using polyaniline/titanium dioxide heterostructures as efficient photocatalysts is based on the synergistic effect of conducting polymer and metal oxide semiconductors. Due to inconclusive literature reports, the effect of different polyaniline/TiO ratios on photocatalytic activity under UV and visible light was investigated. In most papers, non-recommended dyes are used as model compounds to evaluate visible light activity.

View Article and Find Full Text PDF

The fabrication of dual-quantum dot heterostructures offers a promising strategy to enhance the environmental remediation performance of photocatalysts. Herein, a BiWO-based Z-scheme heterojunction was constructed by incorporating carbonized polymer dots (CPDs) and CdS quantum dots (QDs) via a microwave-assisted solvothermal method. The 1 wt% CPDs/CdS QDs/BiWO (CCBW-1) composite achieved optimal Cr(VI) removal, reaching 97.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!