This study applied a quantitative proteomics approach along with bioinformatics analyses to investigate changes in the plasma proteome of normal and overconditioned dairy cows during the transition period. Fifteen weeks before their anticipated calving date, 38 multiparous Holstein cows were selected based on their current and previous body condition scores (BCS) and allocated to either a high or a normal BCS group (19 cows each). They received different diets until dry-off to reach targeted differences in BCS and back fat thickness (BFT) until dry-off. At dry-off, normal BCS cows had a BCS <3.5 (minimum, 2.75) and BFT <1.2 cm (minimum, 0.58), and the high BCS cows had a BCS >3.75 (maximum, 4.50) and BFT >1.4 cm (maximum, 2.90). The proteomics study used a subset of 5 animals from each group. These cows were selected based on their circulating concentrations of fatty acids (FA) on d 14 postpartum and β-hydroxybutyrate (BHB) on d 21 postpartum, representing the greater or the lower extreme values within their BCS group, respectively. The high BCS subset (HE-HBCS) had 4.50 < BCS > 3.75, FA = 1.17 ± 0.46 mmol/L, and BHB = 2.15 ± 0.42 mmol/L (means ± SD), and the low BCS subset (LE-NBCS) had 3.50 < BCS > 2.75, FA = 0.51 ± 0.28 mmol/L, and BHB = 0.84 ± 0.17 mmol/L. Plasma samples from d -49, +7, and +21 relative to parturition were used for proteome profiling by applying the quantitative tandem mass tags (TMT) approach. Nondepleted plasma samples were subjected to reduction and digestion and then labeled with TMT 10plex reagents. High-resolution liquid chromatography-tandem mass spectrometry analysis of TMT-labeled peptides was carried out, and the acquired spectra were analyzed for protein identification and quantification. In total, 254 quantifiable proteins (criteria: 2 unique peptides and 5% false discovery rate) were identified in the plasma samples. From these, 24 differentially abundant proteins (14 more abundant, 10 less abundant) were observed in the LE-NBCS cows compared with the HE-HBCS cows during the transition period. Plasma α-2-macroglobulins were more abundant in HE-HBCS versus LE-NBCS cows at d +7 and +21. Gene Ontology enrichment analyses of differentially abundant proteins revealed that the acute inflammatory response, regulation of complement activation, protein activation cascade, and regulation of humoral immune response were the most enriched terms in the LE-NBCS group compared with the HE-HBCS group. In addition, we identified 24 differentially abundant proteins (16 in the LE-NBCS group, and 8 in the HE-HBCS group) during the transition period. The complement components C1q and C5 were less abundant, while C3 and C3d were more abundant in LE-NBCS compared with HE-HBCS cows. Overall, overconditioning around calving was associated with alterations in protein pathways related to acute inflammatory response and regulation of complement and coagulation cascades in transition cows.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2019-17897 | DOI Listing |
Nat Commun
January 2025
School of Animal Sciences, Virginia Tech, Blacksburg, USA.
The diagnosis of milk fever or hypocalcemia in lactating cows has a significant economic impact on the dairy industry. It is challenging to identify asymptomatic subclinical hypocalcemia (SCH) in transition dairy cows. Monitoring subclinical hypocalcemia in milk samples can expedite treatment and improve the health, productivity, and welfare of dairy cows.
View Article and Find Full Text PDFFront Vet Sci
December 2024
Institute of Dairy and Animal Sciences, University of Agriculture, Faisalabad, Pakistan.
Introduction: High-producing dairy cows often face calving stress and reduced feed intake during the transition period, leading to body fat mobilization to meet production demands. Supplementing rations with energy-dense sources like rumen-protected glucose (RPG) may enhance production performance in early lactation.
Methods: This study evaluated the effects of RPG supplementation on feed intake, body condition score (BCS), production performance, and blood metabolites in 32 early-lactation Holstein Friesian cows (6 ± 1 DIM; milk yield: 30 ± 5 kg/day; body weight: 550 ± 50 kg; BCS: 3.
Sci Rep
December 2024
Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
BMC Vet Res
December 2024
Department of Research, Research and Development Station for Bovine, Arad, Romania.
Background: There are no studies belong NOTCH2 gene polymorphism in relation to reproductive and productive traits in Holstein cattle. The objective of the present study was to investigate the effect of NOTCH2 gene polymorphisms on productive and reproductive performance of fertile and anestrum cattle.
Methods: The cattle were classified into anestrus for 3-12 months postpartum (n = 115, 37.
J Anim Sci
December 2024
Centre for Animal Nutrition and Welfare, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
We recently reported factors leading to different severity of ruminal pH drop in primiparous cows fed the same diet during transition and early lactation. The present study evaluates the effects of those severities on performance and several blood and balance parameters in the same 24 primiparous cows from 3 wk before calving until wk 10 in lactation. Dietary concentrate was increased for all cows from 32 before calving to 60% (DM basis) over the first wk in lactation, resulting in a diet with 40% non-fiber carbohydrates (NFC), and 14.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!