Evolution and expression analysis of the sorghum ubiquitin-conjugating enzyme family.

Funct Plant Biol

Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China.

Published: February 2019

AI Article Synopsis

Article Abstract

Ubiquitin-conjugating enzymes (UBCs), which catalyse the transfer of ubiquitin to substrate or E3 ligases, are key enzymes in ubiquitination modifications of target proteins. Current knowledge regarding the sorghum (Sorghum bicolor (L.) Moench) ubiquitin-conjugating enzyme (SbUBC) family remains very limited. We identified 53 UBC-encoding genes in the sorghum genome and divided these into 18 groups according to their phylogenetic relationship with Arabidopsis thaliana (L.) Heynh., which was further supported by conserved motif and gene structure analyses. Different expression levels under a variety of abiotic stresses suggested that these might participate in distinct signalling pathways and that they underwent functional divergence during evolution. Furthermore, several SbUBC genes responded to single treatments, and individual SbUBC genes responded to multiple treatments, suggesting that sorghum UBCs may mediate crosstalk among different signalling pathways. Overall, the results provide valuable information for better understanding the classification and putative functions of sorghum UBC-encoding genes.

Download full-text PDF

Source
http://dx.doi.org/10.1071/FP18184DOI Listing

Publication Analysis

Top Keywords

ubiquitin-conjugating enzyme
8
ubc-encoding genes
8
signalling pathways
8
sbubc genes
8
genes responded
8
sorghum
6
evolution expression
4
expression analysis
4
analysis sorghum
4
sorghum ubiquitin-conjugating
4

Similar Publications

Eupalinolide B inhibits periodontitis development by targeting ubiquitin conjugating enzyme UBE2D3.

MedComm (2020)

January 2025

Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for Geriatrics Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology Shenzhen China.

Periodontitis is a chronic periodontal inflammatory disease caused by periodontal pathogens commonly seen in adults. Eupalinolide B (EB) is a sesquiterpenoid natural product extracted from Eupatorium lindleyanum and has been reported as a potential drug for cancers and immune disorders. Here, we explored the ameliorative effects and underlying molecular mechanism of EB on periodontitis for the first time.

View Article and Find Full Text PDF

Uveal melanoma (UM) poses a significant lethality, with approximately 50% of those developing metastases surviving less than one year. In the progression of UM, vasculogenic mimicry (VM) induced by hypoxia plays a pivotal role, which also partially explains the resistance of UM to anti-angiogenic therapies. Nevertheless, the crucial molecular mechanisms underlying VM in the progression of UM remain unclear.

View Article and Find Full Text PDF

Calcium/calmodulin dependent protein kinase II inhibitor 1 (Camk2n1) is closely associated with a peak logarithm of odds score in quantitative trait loci for systolic blood pressure. Increased Camk2n1 mRNA expression has been specifically observed in the kidneys of hypertension mouse models. However, the precise role of Camk2n1 in the kidney remains unclear.

View Article and Find Full Text PDF

Understanding the molecular mechanisms of abiotic stress responses in plants is instrumental for the development of climate-resilient crops. Key factors in abiotic stress responses, such as the proton- pumping pyrophosphatase (AVP1), have been identified, but their function and regulation remain elusive. Here, we explored the post-translational regulation of AVP1 by the ubiquitin-conjugating enzyme UBC34 and its relevance in the salt stress and phosphate starvation responses of Arabidopsis (Arabidopsis thaliana).

View Article and Find Full Text PDF

Unraveling the Role of Ubiquitin-Conjugating Enzyme UBE2T in Tumorigenesis: A Comprehensive Review.

Cells

December 2024

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China.

Ubiquitin-conjugating enzyme E2 T (UBE2T) is a crucial E2 enzyme in the ubiquitin-proteasome system (UPS), playing a significant role in the ubiquitination of proteins and influencing a wide range of cellular processes, including proliferation, differentiation, apoptosis, invasion, and metabolism. Its overexpression has been implicated in various malignancies, such as lung adenocarcinoma, gastric cancer, pancreatic cancer, liver cancer, and ovarian cancer, where it correlates strongly with disease progression. UBE2T facilitates tumorigenesis and malignant behaviors by mediating essential functions such as DNA repair, apoptosis, cell cycle regulation, and the activation of oncogenic signaling pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!